Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(12): 113413, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38096059

ABSTRACT

Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.


Subject(s)
Codon Usage , Ribosomes , Animals , Humans , Ribosomes/metabolism , Protein Biosynthesis , Codon/genetics , Codon/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
PLoS One ; 17(10): e0274050, 2022.
Article in English | MEDLINE | ID: mdl-36194597

ABSTRACT

Since the initial reported discovery of SARS-CoV-2 in late 2019, genomic surveillance has been an important tool to understand its transmission and evolution. Here, we sought to describe the underlying regional phylodynamics before and during a rapid spreading event that was documented by surveillance protocols of the United States Air Force Academy (USAFA) in late October-November of 2020. We used replicate long-read sequencing on Colorado SARS-CoV-2 genomes collected July through November 2020 at the University of Colorado Anschutz Medical campus in Aurora and the United States Air Force Academy in Colorado Springs. Replicate sequencing allowed rigorous validation of variation and placement in a phylogenetic relatedness network. We focus on describing the phylodynamics of a lineage that likely originated in the local Colorado Springs community and expanded rapidly over the course of two months in an outbreak within the well-controlled environment of the United States Air Force Academy. Divergence estimates from sampling dates indicate that the SARS-CoV-2 lineage associated with this rapid expansion event originated in late October 2020. These results are in agreement with transmission pathways inferred by the United States Air Force Academy, and provide a window into the evolutionary process and transmission dynamics of a potentially dangerous but ultimately contained variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Colorado/epidemiology , Genome, Viral , Humans , Phylogeny , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL