Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37623084

ABSTRACT

The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism's tissues. Amorphous hydrogel is advantageous for administration in animal organs due to its ease of injection compared to resilient analogs. In this study, we investigated the applicability of a semi-liquid 2.5% polyacrylamide hydrogel (PAAH) as a scaffold for fluorescent polyelectrolyte microcapsules (PMs) in rainbow trout. The hydrogel was injected subcutaneously into the adipose fin, which is a small, highly translucent fold of skin in salmonids that is convenient for implanting optical sensors. Using histological methods, we compared tissue organization and in vivo stability of the applied hydrogel at the injection site after administration of uncoated PMs or PMs coated with 2.5% PAAH (PMs-PAAH) for a period of 3 to 14 days. Our results showed that the introduction of PMs into the gel did not have a masking effect, as they were recognized, engulfed, and carried away by phagocytes from the injection site. However, both PMs and PMs-PAAH were found to provoke chronic inflammation at the injection site, although according to cytokine expression in the fish spleen, the irritating effect was local and did not affect the systemic immunity of the fish. Therefore, our study suggests low applicability of 2.5% polyacrylamide as a scaffold for injectable sensors within a timeframe of days.

2.
Toxics ; 10(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36548583

ABSTRACT

This study aimed to follow the neurotoxic effect of peat smoke on adult outbred rats and its influence on central nervous system (CNS) parameters in first-generation offspring. Under experimental conditions, exposure to peat smoke was carried out on adult male Wistar rats for 24 h. After the end of the exposure, an open field test (OFT), electroencephalography (EEG), and histological analysis of the testes and brains of smoke-exposed males were performed, after which they were mated with intact females to obtain F1 offspring. Stillbirth, neonatal mortality, and body weight at 4, 7, 14, and 21 postnatal days, as well as behavior in the OFT and EEG parameters during puberty (3 months), were assessed. The results of the examination of F0 males showed a significant increase in motor activity and anxiety in the open field test and a violation of EEG parameters. Histopathologically, peat smoke caused a sharp increase in shadow cells (homogeneous cells with pale-stained cytoplasm, in which the cell and nuclear membranes are not visualized) and degeneratively altered neurons in the brain; we found no changes in the testicles. Peat smoke exposure during preconception did not affect neonatal mortality and weight gain in F1 offspring. Adult females born to peat-smoke-exposed males showed an increase in locomotor activity, and the behavior of adult F1 males did not differ from the control. In F1 males, a statistically significant increase in slow-wave activity indices in the delta band was observed.

3.
Polymers (Basel) ; 14(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36235907

ABSTRACT

Implantable sensors based on shaped biocompatible hydrogels are now being extensively developed for various physiological tasks, but they are usually difficult to implant into small animals. In this study, we tested the long-term in vivo functionality of pH-sensitive implants based on amorphous 2.7% polyacrylamide hydrogel with the microencapsulated fluorescent probe SNARF-1. The sensor was easy to manufacture and introduce into the tissues of a small fish Danio rerio, which is the common model object in biomedical research. Histological examination revealed partial degradation of the gel by the 7th day after injection, but it was not the case on the 1st day. Using the hydrogel sensor, we were able to trace the interstitial pH in the fish muscles under normal and hypercapnic conditions for at least two days after the implantation. Thus, despite later immune response, amorphous polyacrylamide is fully suitable for preparing implantable sensors for various mid-term physiological experiments on small fishes. The proposed approach can be further developed to create implantable sensors for animals with similar anatomy.

4.
Polymers (Basel) ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956714

ABSTRACT

The acute and subacute toxicity of a newly synthesized silver selenide nanoparticles encapsulated in a natural polymeric matrix of arabinogalactan study has been studied. The nanocomposite is a promising material for the design of diagnostic and therapeutic drugs. It can also be used for the preparation of fluorescent labels and in thermal oncotherapy. The employment of binary nanocomposites enables one to unveil the potential hidden in metals which constitute these composites. The study of acute toxicity, carried out by the oral administration of nanocomposites at a dose of 2000 mg/kg, has shown that the compound belongs to low-toxic substances of the 5th hazard class. With the subacute oral administration of nanocomposites at a dose of 500 µg/kg, slight changes are observed in the brain tissue and liver of experimental animals, indicating the development of compensatory-adaptive reactions. In the kidneys, the area of the Shumlyansky-Bowman chamber decreases by 40.5% relative to the control group. It is shown that the application of the protective properties of selenium, which is contained in the composite, helps to reduce the toxicity of silver.

5.
IET Nanobiotechnol ; 14(6): 519-526, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32755962

ABSTRACT

In the present study, water-soluble hybrid selenium-containing nanocomposites have been synthesised via soft oxidation of selenide-anions, preliminarily generated from elemental bulk-selenium in the base-reduction system 'N2H4-NaOH'. The nanocomposites obtained consist of Se0NPs (4.6-24.5 nm) stabilised by κ-carrageenan biocompatible polysaccharide. The structure of these composite nanomaterials has been proven using complementary physical-chemical methods: X-ray diffraction analysis, transmission electron microscopy, optical spectroscopy, and dynamic light scattering. Optical ranges of 'emission/excitation' of aqueous solutions of nanocomposites with Se0NPs of different sizes are established and the most important parameters of their luminescence are determined. For the obtained nanocomposites, the expressed antiradical activity against free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid has been found, the value of which depends on the size of selenium nanoparticles. It is experimentally revealed that all obtained nanocomposites are low toxic (LD50 >2000 mg/kg). It is also found that small selenium nanoparticles (6.8 nm), in contrast to larger nanoparticles (24.5 nm), are accumulated in organisms to significantly increase the level of selenium in the liver, kidneys, and brain (in lesser amounts) of rats.


Subject(s)
Antioxidants , Carrageenan , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Selenium , Animals , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Brain Chemistry/drug effects , Carrageenan/chemistry , Carrageenan/pharmacokinetics , Carrageenan/pharmacology , Kidney/chemistry , Kidney/drug effects , Male , Microscopy, Electron, Transmission , Particle Size , Rats , Selenium/chemistry , Selenium/pharmacokinetics , Selenium/pharmacology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL