Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(10): e1012475, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39374306

ABSTRACT

Unmyelinated C-fibers constitute the vast majority of axons in peripheral nerves and play key roles in homeostasis and signaling pain. However, little is known about their ion channel expression, which controls their firing properties. Also, because of their small diameters (~ 1 µm), it has not been possible to characterize their membrane properties using voltage clamp. We developed a novel library of isoform-specific ion channel models to serve as the basis functions of our C-fiber models. We then developed a particle swarm optimization (PSO) framework that used the isoform-specific ion channel models to reverse engineer C-fiber membrane properties from measured autonomic and cutaneous C-fiber conduction responses. Our C-fiber models reproduced experimental conduction velocity, chronaxie, action potential duration, intracellular threshold, and paired pulse recovery cycle. The models also matched experimental activity-dependent slowing, a property not included in model optimization. We found that simple conduction responses, characterizing the action potential, were controlled by similar membrane properties in both the autonomic and cutaneous C-fiber models, but complicated conduction response, characterizing the afterpotenials, were controlled by differential membrane properties. The unmyelinated C-fiber models constitute important tools to study autonomic signaling, assess the mechanisms of pain, and design bioelectronic devices. Additionally, the novel reverse engineering approach can be applied to generate models of other neurons where voltage clamp data are not available.

2.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36150892

ABSTRACT

Low-frequency (<200 Hz), subperception spinal cord stimulation (SCS) is a novel modality demonstrating therapeutic efficacy for treating chronic neuropathic pain. When stimulation parameters were carefully titrated, patients experienced rapid onset (seconds-minutes) pain relief without paresthesia, but the mechanisms of action are unknown. Using an integrated computational model and in vivo measurements in urethane-anesthetized rats, we quantified how stimulation parameters (placement, pulse width, frequency, and amplitude) influenced dorsal column (DC) axon activation and neural responses in the dorsal horn (DH). Both modeled and recorded DC axons responded with irregular spiking patterns in response to low-amplitude SCS. Maximum inhibition of DH neurons occurred at ∼80% of the predicted sensory threshold in both modeled and recorded neurons, and responses were strongly dependent on spatially targeting of stimulation, i.e., the complement of DC axons activated, and on stimulation parameters. Intrathecal administration of bicuculline shifted neural responses to low-amplitude stimulation in both the model and experiment, suggesting that analgesia is dependent on segmental GABAergic mechanisms. Our results support the hypothesis that low-frequency subperception SCS generates rapid analgesia by activating a small number of DC axons which inhibit DH neuron activity via surround inhibition.


Subject(s)
Neuralgia , Spinal Cord Stimulation , Animals , Bicuculline , Neuralgia/therapy , Posterior Horn Cells , Rats , Spinal Cord/physiology , Spinal Cord Stimulation/methods , Urethane
3.
J Neurophysiol ; 125(1): 86-104, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33085556

ABSTRACT

Biophysically based computational models of nerve fibers are important tools for designing electrical stimulation therapies, investigating drugs that affect ion channels, and studying diseases that affect neurons. Although peripheral nerves are primarily composed of unmyelinated axons (i.e., C-fibers), most modeling efforts focused on myelinated axons. We implemented the single-compartment model of vagal afferents from Schild et al. (1994) (Schild JH, Clark JW, Hay M, Mendelowitz D, Andresen MC, Kunze DL. J Neurophysiol 71: 2338-2358, 1994) and extended the model into a multicompartment axon, presenting the first cable model of a C-fiber vagal afferent. We also implemented the updated parameters from the Schild and Kunze (1997) model (Schild JH, Kunze DL. J Neurophysiol 78: 3198-3209, 1997). We compared the responses of these novel models with those of three published models of unmyelinated axons (Rattay F, Aberham M. IEEE Trans Biomed Eng 40: 1201-1209, 1993; Sundt D, Gamper N, Jaffe DB. J Neurophysiol 114: 3140-3153, 2015; Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, Fransén E. J Neurophysiol 111: 1721-1735, 2014) and with experimental data from single-fiber recordings. Comparing the two models by Schild et al. (1994, 1997) revealed that differences in rest potential and action potential shape were driven by changes in maximum conductances rather than changes in sodium channel dynamics. Comparing the five model axons, the conduction speeds and strength-duration responses were largely within expected ranges, but none of the models captured the experimental threshold recovery cycle-including a complete absence of late subnormality in the models-and their action potential shapes varied dramatically. The Tigerholm et al. (2014) model best reproduced the experimental data, but these modeling efforts make clear that additional data are needed to parameterize and validate future models of autonomic C-fibers.NEW & NOTEWORTHY Peripheral nerves are primarily composed of unmyelinated axons, and there is growing interest in electrical stimulation of the autonomic nervous system to treat various diseases. We present the first cable model of an unmyelinated vagal nerve fiber and compare its ion channel isoforms and conduction responses with other published models of unmyelinated axons, establishing important tools for advancing modeling of autonomic nerves.


Subject(s)
Action Potentials , Axons/physiology , Models, Neurological , Nerve Fibers, Unmyelinated/physiology , Animals , Neurons, Afferent/physiology , Vagus Nerve/cytology , Vagus Nerve/physiology
4.
J Neural Eng ; 14(6): 066013, 2017 12.
Article in English | MEDLINE | ID: mdl-28747582

ABSTRACT

OBJECTIVE: Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. APPROACH: We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. MAIN RESULTS: The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. SIGNIFICANCE: The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.


Subject(s)
Algorithms , Computer Simulation/standards , Models, Genetic , Neurons , Electric Stimulation/methods , Humans , Neurons/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL