Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Sci Rep ; 13(1): 7547, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161022

ABSTRACT

To reduce HIV transmission, locally applied pre-exposure prophylaxis (PrEP) products for anorectal use will be important complements to oral and injectable PrEP products already available. It is critical to preserve an intact rectal epithelium and avoid an influx of mucosal HIV target cells with such product use. In this phase 1 clinical trial, we evaluated application of a topical rectal douche product containing Q-Griffithsin (Q-GRFT). Colorectal tissue samples were obtained via sigmoidoscopy at baseline, 1 and 24 h after single-dose exposure in 15 healthy volunteers. In situ staining for epithelial junction markers and CD4+ cells were assessed as an exploratory endpoint. A high-throughput, digitalized in situ imaging analysis workflow was developed to visualize and quantify these HIV susceptibility markers. We observed no significant differences in epithelial distribution of E-cadherin, desmocollin-2, occludin, claudin-1, or zonula occludens-1 when comparing the three timepoints or Q-GRFT versus placebo. There were also no differences in %CD4+ cells within the epithelium or lamina propria in any of these comparisons. In conclusion, the rectal epithelium and CD4+ cell distribution remained unchanged following topical application of Q-GRFT. In situ visualization of HIV susceptibility markers at mucosal sites could be useful to complement standard product safety assessments.


Subject(s)
HIV Infections , Mucous Membrane , Humans , Rectum , CD4-Positive T-Lymphocytes , HIV Infections/prevention & control
2.
Microbiome ; 11(1): 67, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004130

ABSTRACT

BACKGROUND: The majority of studies characterizing female genital tract microbiota have focused on luminal organisms, while the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that these communities may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a cohort of Kenyan female sex workers. RESULTS: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners-dominated luminal samples had a corresponding Gardnerella-dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbial community was associated with epithelial remodeling and pro-inflammatory pathways. Tissue-adherent communities dominated by L. iners and Gardnerella were associated with lower host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, although with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. CONCLUSION: We identified ectocervical tissue-adherent bacterial communities in all study participants of a female sex worker cohort. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. We further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community could possibly act as a reservoir that seed the lumen with less optimal, non-Lactobacillus, bacteria. Video Abstract.


Subject(s)
Microbiota , Sex Workers , Female , Humans , Vagina/microbiology , Kenya , Microbiota/genetics , Bacteria/genetics , Lactobacillus/genetics , RNA, Ribosomal, 16S/genetics , Gene Expression
3.
PLoS Pathog ; 18(5): e1010494, 2022 05.
Article in English | MEDLINE | ID: mdl-35533147

ABSTRACT

Depot medroxyprogesterone acetate (DMPA) is an injectable hormonal contraceptive used by millions of women worldwide. However, experimental studies have associated DMPA use with genital epithelial barrier disruption and mucosal influx of human immunodeficiency virus (HIV) target cells. We explored the underlying molecular mechanisms of these findings. Ectocervical biopsies and cervicovaginal lavage (CVL) specimens were collected from HIV-seronegative Kenyan sex workers using DMPA (n = 32) or regularly cycling controls (n = 64). Tissue samples were assessed by RNA-sequencing and quantitative imaging analysis, whereas protein levels were measured in CVL samples. The results suggested a DMPA-associated upregulation of genes involved in immune regulation, including genes associated with cytokine-mediated signaling and neutrophil-mediated immunity. A transcription factor analysis further revealed DMPA-associated upregulation of RELA and NFKB1 which are involved in several immune activation pathways. Several genes significantly downregulated in the DMPA versus the control group were involved in epithelial structure and function, including genes encoding keratins, small proline-rich proteins, and cell-cell adhesion proteins. Pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development, including keratinization and cornification processes. The cervicovaginal microbiome composition (Lactobacillus dominant and non-Lactobacillus dominant) had no overall interactional impact on the DMPA associated tissue gene expression. Imaging analysis verified that DMPA use was associated with an impaired epithelial layer as illustrated by staining for the selected epithelial junction proteins E-cadherin, desmoglein-1 and claudin-1. Additional staining for CD4+ cells revealed a more superficial location of these cells in the ectocervical epithelium of DMPA users versus controls. Altered protein levels of SERPINB1 and ITIH2 were further observed in the DMPA group. Identification of specific impaired epithelial barrier structures at the gene expression level, which were verified at the functional level by tissue imaging analysis, illustrates mechanisms by which DMPA adversely may affect the integrity of the genital mucosa.


Subject(s)
Contraceptive Agents, Female , HIV Infections , Serpins , Cervix Uteri , Contraceptive Agents, Female/adverse effects , Female , Humans , Kenya , Medroxyprogesterone Acetate/adverse effects
4.
J Infect Dis ; 226(8): 1428-1440, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35511032

ABSTRACT

BACKGROUND: Mucosa-associated invariant T (MAIT) cells are innate-like T cells with specialized antimicrobial functions. Circulating MAIT cells are depleted in chronic human immunodeficiency virus (HIV) infection, but studies examining this effect in peripheral tissues, such as the female genital tract, are lacking. METHODS: Flow cytometry was used to investigate circulating MAIT cells in a cohort of HIV-seropositive (HIV+) and HIV-seronegative (HIV-) female sex workers (FSWs), and HIV- lower-risk women (LRW). In situ staining and quantitative polymerase chain reaction were performed to explore the phenotype of MAIT cells residing in paired cervicovaginal tissue. The cervicovaginal microbiome was assessed by means of 16S ribosomal RNA gene sequencing. RESULTS: MAIT cells in the HIV+ FSW group were low in frequency in the circulation but preserved in the ectocervix. MAIT cell T-cell receptor gene segment usage differed between the HIV+ and HIV- FSW groups. The TRAV1-2-TRAJ20 transcript was the most highly expressed MAIT TRAJ gene detected in the ectocervix in the HIV+ FSW group. MAIT TRAVJ usage was not associated with specific genera in the vaginal microbiome. CONCLUSIONS: MAIT cells residing in the ectocervix are numerically preserved irrespective of HIV infection status and displayed dominant expression of TRAV1-2-TRAJ20. These findings have implications for understanding the role of cervical MAIT cells in health and disease.


Subject(s)
HIV Infections , Mucosal-Associated Invariant T Cells , Sex Workers , Female , HIV Infections/metabolism , Humans , Mucosal-Associated Invariant T Cells/metabolism , Mucous Membrane/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism
5.
J Infect Dis ; 225(7): 1151-1161, 2022 04 01.
Article in English | MEDLINE | ID: mdl-32780807

ABSTRACT

BACKGROUND: The hormonal contraceptive depot medroxyprogesterone acetate (DMPA) may be associated with an increased risk of acquiring human immunodeficiency virus (HIV). We hypothesize that DMPA use influences the ectocervical tissue architecture and HIV target cell localization. METHODS: Quantitative image analysis workflows were developed to assess ectocervical tissue samples collected from DMPA users and control subjects not using hormonal contraception. RESULTS: Compared to controls, the DMPA group exhibited a significantly thinner apical ectocervical epithelial layer and a higher proportion of CD4+CCR5+ cells with a more superficial location. This localization corresponded to an area with a nonintact E-cadherin net structure. CD4+Langerin+ cells were also more superficially located in the DMPA group, although fewer in number compared to the controls. Natural plasma progesterone levels did not correlate with any of these parameters, whereas estradiol levels were positively correlated with E-cadherin expression and a more basal location for HIV target cells of the control group. CONCLUSIONS: DMPA users have a less robust epithelial layer and a more apical distribution of HIV target cells in the human ectocervix, which could confer a higher risk of HIV infection. Our results highlight the importance of assessing intact genital tissue samples to gain insights into HIV susceptibility factors.


Subject(s)
Contraceptive Agents, Female , HIV Infections , Cervix Uteri/metabolism , Contraceptive Agents, Female/adverse effects , Female , HIV , Humans , Medroxyprogesterone Acetate/adverse effects
6.
Vaccines (Basel) ; 9(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806390

ABSTRACT

Immunological correlates of natural resistance to HIV have been identified in HIV-exposed seronegative (HESN) individuals and include a low-inflammatory genital mucosal status. The cervicovaginal epithelium has not been studied for such correlates despite constituting an important barrier against sexual HIV transmission. To fill this gap in knowledge, we collected samples of blood, cervical mononuclear cells, cervicovaginal lavage, and ectocervical tissue from Kenyan HESN sex workers (n = 29) and controls (n = 33). The samples were analyzed by flow cytometry, protein profiling, 16S rRNA gene sequencing, in situ image analysis, and tissue-based RNA sequencing. A significantly higher relative proportion of regulatory T cells in blood (B7+CD25hiFoxP3+CD127loCD4+ and B7+Helios+FoxP3+CD4+), and a significantly lower proportion of activated cervical T cells (CCR5+CD69+CD4+ and CCR5+CD69+CD8+), were found in the HESN group compared with the controls. In contrast, there were no statistically significant differences between the study groups in cervicovaginal protein and microbiome compositions, ectocervical epithelial thickness, E-cadherin expression, HIV receptor expression, and tissue RNA transcriptional profiles. The identification of an intact ectocervical microenvironment in HESN individuals add new data to current knowledge about natural resistance to sexual transmission of HIV.

7.
Methods Mol Biol ; 2098: 83-94, 2020.
Article in English | MEDLINE | ID: mdl-31792817

ABSTRACT

The mucosa-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial vitamin B2 metabolites presented via MR1, a MHC-I-related protein. MAIT cells are abundant in blood and mucosa, where they display a broad range of functions. Spatial distribution of cells and their proximity to other cells, including infected cells and antigen presenting cells, are crucial components of cell-mediated immunity. Here we describe techniques to detect MAIT cells and MR1-expressing cells in situ, which enable the visualization, distribution, and localization of these cells within their histological context. We provide specific protocols and describe potential advantages and limitations for each of the presented methodologies for studying MAIT cells in human tissues.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunohistochemistry , In Situ Hybridization , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Biopsy , Fluorescent Antibody Technique , Gene Expression , Histocompatibility Antigens Class I/genetics , Humans , Immunohistochemistry/methods , In Situ Hybridization/methods , Microscopy, Fluorescence , Minor Histocompatibility Antigens/genetics , Mucosal-Associated Invariant T Cells/cytology , Mucosal-Associated Invariant T Cells/immunology , Organ Specificity
8.
Sci Rep ; 9(1): 18120, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792342

ABSTRACT

Natural-product derived lectins can function as potent viral inhibitors with minimal toxicity as shown in vitro and in small animal models. We here assessed the effect of rectal application of an anti-HIV lectin-based microbicide Q-Griffithsin (Q-GRFT) in rectal tissue samples from rhesus macaques. E-cadherin+ cells, CD4+ cells and total mucosal cells were assessed using in situ staining combined with a novel customized digital image analysis platform. Variations in cell numbers between baseline, placebo and Q-GRFT treated samples were analyzed using random intercept linear mixed effect models. The frequencies of rectal E-cadherin+ cells remained stable despite multiple tissue samplings and Q-GRFT gel (0.1%, 0.3% and 1%, respectively) treatment. Whereas single dose application of Q-GRFT did not affect the frequencies of rectal CD4+ cells, multi-dose Q-GRFT caused a small, but significant increase of the frequencies of intra-epithelial CD4+ cells (placebo: median 4%; 1% Q-GRFT: median 7%) and of the CD4+ lamina propria cells (placebo: median 30%; 0.1-1% Q-GRFT: median 36-39%). The resting time between sampling points were further associated with minor changes in the total and CD4+ rectal mucosal cell levels. The results add to general knowledge of in vivo evaluation of anti-HIV microbicide application concerning cellular effects in rectal mucosa.


Subject(s)
Anti-HIV Agents/pharmacology , Anti-Infective Agents, Local/pharmacology , Intestinal Mucosa/drug effects , Lectins/pharmacology , Plant Lectins/pharmacology , Rectum/drug effects , Animals , Anti-HIV Agents/administration & dosage , CD4 Antigens/metabolism , Cadherins/metabolism , Cell Count , Epithelial Cells/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Lectins/administration & dosage , Macaca mulatta , Plant Lectins/administration & dosage , Recombinant Proteins , Rectum/cytology , Rectum/immunology , Time Factors
9.
Eur J Immunol ; 49(1): 133-143, 2019 01.
Article in English | MEDLINE | ID: mdl-30372518

ABSTRACT

Mucosa-associated invariant T (MAIT) cells are unconventional T lymphocytes defined by their innate-like characteristics and broad antimicrobial responsiveness. Whether MAIT cells are part of the tissue-resident defense in the oral mucosal barrier is unknown. Here, we found MAIT cells present in the buccal mucosa, with a tendency to cluster near the basement membrane, and located in both epithelium and the underlying connective tissue. Overall MAIT cell levels were similar in the mucosa compared to peripheral blood, in contrast to conventional T cells that showed an altered representation of CD4+ and CD8+ subsets. The major mucosal MAIT cell subset displayed a tissue-resident and activated profile with high expression of CD69, CD103, HLA-DR, and PD-1, as well as a skewed subset distribution with higher representation of CD4- /CD8- double-negative cells and CD8αα+ cells. Interestingly, tissue-resident MAIT cells had a specialized polyfunctional response profile with higher IL-17 levels, as assessed by polyclonal stimulus and compared to tissue nonresident and circulating populations. Furthermore, resident buccal MAIT cells were low in perforin. Together, these data indicate that MAIT cells form a part of the oral mucosal T cell compartment, where they exhibit a tissue-resident-activated profile biased toward IL-17 production.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interleukin-17/metabolism , Mouth Mucosa/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , CD8 Antigens/metabolism , Female , Healthy Volunteers , Humans , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Young Adult
10.
AIDS Res Hum Retroviruses ; 35(3): 236-246, 2019 03.
Article in English | MEDLINE | ID: mdl-30585733

ABSTRACT

Depot medroxyprogesterone acetate (DMPA) is the most common hormonal contraceptive used by women in sub-Saharan Africa, however, it has been epidemiologically associated with HIV infections. To assess whether DMPA has an effect on the number and activation of HIV target cells, this study assessed the levels and phenotype of blood- and mucosal-derived HIV target cells among women using DMPA. Thirty-five HIV uninfected women from the Pumwani Sex Worker cohort from Nairobi, Kenya were enrolled in the study (15 using DMPA and 20 not using hormonal contraception). Blood (plasma and peripheral blood mononuclear cells) and cervicovaginal (lavage, cervical cells, and ectocervical biopsies) samples were collected. Cellular phenotype and activation status were determined by flow cytometry, cytokine levels were assessed by bead array and image analysis assessed cell number and phenotype in situ. In blood, the proportion of HIV target cells and activated T cells was lower in DMPA users versus those not using hormonal contraceptives. However, analysis of cervical mononuclear cells showed that DMPA users had elevated levels of activated T cells (CD4+CD69+) and expressed lower levels of the HIV co-receptor CCR5 on a per cell basis, while tissue samples showed that in the ectocervix, DMPA users had a higher proportion of CD4+CCR5+ T cells. This study demonstrates that DMPA users had higher levels of activated T cells and HIV target cells in the genital tract. The increased pool of mucosal HIV target cells provides new biological information about the potential impact of DMPA on HIV susceptibility.


Subject(s)
CD4-Positive T-Lymphocytes , Cervix Uteri/immunology , Contraceptive Agents, Female/pharmacology , Medroxyprogesterone Acetate/pharmacology , Receptors, CCR5/metabolism , Sex Workers , Adult , Cervix Uteri/drug effects , Cohort Studies , Contraceptive Agents, Female/administration & dosage , Contraceptive Agents, Female/adverse effects , Cross-Sectional Studies , Cytokines/blood , Disease Susceptibility/chemically induced , Female , HIV Infections/immunology , Humans , Kenya , Lymphocyte Activation/drug effects , Medroxyprogesterone Acetate/administration & dosage , Medroxyprogesterone Acetate/adverse effects
11.
Proc Natl Acad Sci U S A ; 115(49): E11513-E11522, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30442667

ABSTRACT

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the MHC class I-like protein MR1. Human MAIT cells predominantly express the CD8α coreceptor (CD8+), with a smaller subset lacking both CD4 and CD8 (double-negative, DN). However, it is unclear if these two MAIT cell subpopulations distinguished by CD8α represent functionally distinct subsets. Here, we show that the two MAIT cell subsets express divergent transcriptional programs and distinct patterns of classic T cell transcription factors. Furthermore, CD8+ MAIT cells have higher levels of receptors for IL-12 and IL-18, as well as of the activating receptors CD2, CD9, and NKG2D, and display superior functionality following stimulation with riboflavin-autotrophic as well as riboflavin-auxotrophic bacterial strains. DN MAIT cells display higher RORγt/T-bet ratio, and express less IFN-γ and more IL-17. Furthermore, the DN subset displays enrichment of an apoptosis gene signature and higher propensity for activation-induced apoptosis. During development in human fetal tissues, DN MAIT cells are more mature and accumulate over gestational time with reciprocal contraction of the CD8+ subset. Analysis of the T cell receptor repertoire reveals higher diversity in CD8+ MAIT cells than in DN MAIT cells. Finally, chronic T cell receptor stimulation of CD8+ MAIT cells in an in vitro culture system supports the accumulation and maintenance of the DN subpopulation. These findings define human CD8+ and DN MAIT cells as functionally distinct subsets and indicate a derivative developmental relationship.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , T-Lymphocyte Subsets/physiology , Female , Fetus , Gene Expression Regulation , Humans , Male , Nucleic Acid Amplification Techniques , Pregnancy , RNA/genetics , RNA/metabolism , Uterus/cytology
12.
Am J Reprod Immunol ; 80(1): e12863, 2018 07.
Article in English | MEDLINE | ID: mdl-29709092

ABSTRACT

PROBLEM: Susceptibility to HIV is associated with the menstrual cycle and vaginal microbiome, but their collective impact on vaginal inflammation remains unclear. Here, we characterized the cervicovaginal proteome, inflammation, and microbiome community structure and function during the menstrual cycle. METHOD OF STUDY: Cervicovaginal secretions were collected from regularly cycling women (n = 16) at median day 10, 16, and 24 of each menstrual cycle and analyzed by mass spectrometry, 16S rRNA gene sequencing, and a multiplex bead array immunoassay. Follicular, ovulatory, and luteal phases were defined by serum sex hormone levels. RESULTS: Ovulation showed the largest mucosal proteome changes, where 30% and 19% of the 406 human proteins identified differed compared to the luteal and follicular phases, respectively. Neutrophil/leukocyte migration pathways were lowest during ovulation and peaked in the luteal phase, while antimicrobial and epithelial barrier promoting proteins were highest during ovulation. Vaginal microbial community structure and function did not vary significantly during the menstrual cycle, with the majority consistently Lactobacillus-dominant (63%) or non-Lactobacillus-dominant (25%). Fluctuations in the epithelial barrier protein RPTN between the ovulatory and luteal phase were amplified in women with Gardnerella vaginalis and anaerobic bacteria and reduced when Lactobacillus was dominant. CONCLUSION: This small study demonstrates that sex hormones modulate neutrophil/leukocyte inflammation, barrier function, and antimicrobial pathways in the female genital tract with the strongest changes occurring during ovulation. The data further suggest a microbiome context for hormone-driven changes in vaginal immunity which may have implications for HIV susceptibility.


Subject(s)
Epithelial Cells/microbiology , Gonadal Steroid Hormones/metabolism , Inflammation/microbiology , Menstrual Cycle/metabolism , Microbiota/physiology , Vagina/microbiology , Adolescent , Adult , Epithelial Cells/metabolism , Female , Humans , Inflammation/metabolism , Leukocytes/metabolism , Leukocytes/microbiology , Neutrophils/metabolism , Neutrophils/microbiology , Ovulation/metabolism , Proteome/metabolism , Sweden , Vagina/metabolism , Young Adult
13.
J Infect Dis ; 218(3): 453-465, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29272532

ABSTRACT

Background: Genital mucosa is the main portal of entry for various incoming pathogens, including human immunodeficiency virus (HIV), hence it is an important site for host immune defenses. Tissue-resident memory T (TRM) cells defend tissue barriers against infections and are characterized by expression of CD103 and CD69. In this study, we describe the composition of CD8+ TRM cells in the ectocervix of healthy and HIV-infected women. Methods: Study samples were collected from healthy Swedish and Kenyan HIV-infected and uninfected women. Customized computerized image-based in situ analysis was developed to assess the ectocervical biopsies. Genital mucosa and blood samples were assessed by flow cytometry. Results: Although the ectocervical epithelium of healthy women was populated with bona fide CD8+ TRM cells (CD103+CD69+), women infected with HIV displayed a high frequency of CD103-CD8+ cells residing close to their epithelial basal membrane. Accumulation of CD103-CD8+ cells was associated with chemokine expression in the ectocervix and HIV viral load. CD103+CD8+ and CD103-CD8+ T cells expressed cytotoxic effector molecules in the ectocervical epithelium of healthy and HIV-infected women. In addition, women infected with HIV had decreased frequencies of circulating CD103+CD8+ T cells. Conclusions: Our data provide insight into the distribution of CD8+ TRM cells in human genital mucosa, a critically important location for immune defense against pathogens, including HIV.


Subject(s)
Antigens, CD/analysis , Basement Membrane/pathology , CD8-Positive T-Lymphocytes/immunology , Cervix Uteri/pathology , HIV Infections/pathology , Integrin alpha Chains/analysis , Mucous Membrane/pathology , Adult , Antigens, Differentiation, T-Lymphocyte/analysis , Biopsy , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/classification , Female , Flow Cytometry , Healthy Volunteers , Humans , Kenya , Lectins, C-Type/analysis , Middle Aged , Sweden , T-Lymphocyte Subsets/chemistry , T-Lymphocyte Subsets/classification , T-Lymphocyte Subsets/immunology , Young Adult
14.
PLoS Pathog ; 13(7): e1006492, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28700681

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1006402.].

15.
PLoS Pathog ; 13(5): e1006402, 2017 May.
Article in English | MEDLINE | ID: mdl-28542587

ABSTRACT

The most immediate and evident effect of mucosal exposure to semen in vivo is a local release of proinflammatory mediators accompanied by an influx of leukocytes into the female genital mucosa (FGM). The implication of such response in HIV-1 transmission has never been addressed due to limitations of currently available experimental models. Using human tissue explants from the uterine cervix, we developed a system of mucosal exposure to seminal plasma (SP) that supports HIV-1 replication. Treatment of ectocervical explants with SP resulted in the upregulation of inflammatory and growth factors, including IL-6, TNF, CCL5, CCL20, CXCL1, and CXCL8, and IL1A, CSF2, IL7, PTGS2, as evaluated by measuring protein levels in explant conditioned medium (ECM) and gene expression in tissue. SP treatment was also associated with increased recruitment of monocytes and neutrophils, as observed upon incubation of peripheral blood leukocytes with ECM in a transwell system. To evaluate the impact of the SP-mediated response on local susceptibility to HIV-1, we infected ectocervical explants with the CCR5-tropic variant HIV-1BaL either in the presence of SP, or after explant pre-incubation with SP. In both experimental settings SP enhanced virus replication as evaluated by HIV-1 p24gag released in explant culture medium over time, as well as by HIV-1 DNA quantification in explants infected in the presence of SP. These results suggest that a sustained inflammatory response elicited by SP soon after coitus may promote HIV-1 transmission to the FGM. Nevertheless, ectocervical tissue explants did not support the replication of transmitted/founder HIV-1 molecular clones, regardless of SP treatment. Our system offers experimental and analytical advantages over traditional models of HIV-1 transmission for the study of SP immunoregulatory effect on the FGM, and may provide a useful platform to ultimately identify new determinants of HIV-1 infection at this site.


Subject(s)
Cervix Uteri/virology , HIV Infections/immunology , HIV-1/physiology , Semen/immunology , Virus Replication , Adult , Cervix Uteri/immunology , Chemokine CCL1/genetics , Chemokine CCL1/immunology , Chemokine CCL20/genetics , Chemokine CCL20/immunology , Female , HIV Infections/transmission , HIV Infections/virology , HIV-1/genetics , Humans , In Vitro Techniques , Interleukin-6/genetics , Interleukin-6/immunology , Male , Middle Aged
16.
Immunity ; 46(2): 287-300, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28214226

ABSTRACT

Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Integrin alpha1/immunology , Skin/immunology , T-Lymphocyte Subsets/immunology , Cell Separation , Flow Cytometry , Humans , Immunologic Memory/immunology , Integrin alpha1/biosynthesis , Lymphocyte Activation/immunology , Microscopy, Confocal , Psoriasis/immunology , Vitiligo/immunology
17.
J Immunol ; 197(5): 1843-51, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27481843

ABSTRACT

Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , HIV-1/immunology , Immune Evasion , Natural Killer T-Cells/immunology , Antigens, CD1d/genetics , Antigens, CD1d/immunology , Dendritic Cells/virology , Female , Gene Products, nef/deficiency , Gene Products, nef/genetics , Gene Products, nef/metabolism , Glucosylceramides/genetics , Glucosylceramides/immunology , HEK293 Cells , HIV Antigens/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Human Immunodeficiency Virus Proteins/deficiency , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Immunity, Cellular , Killer Cells, Natural/immunology , Lymphocyte Activation , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/immunology , Viral Regulatory and Accessory Proteins/deficiency , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
18.
PLoS One ; 11(3): e0149907, 2016.
Article in English | MEDLINE | ID: mdl-26986062

ABSTRACT

While a plethora of data describes the essential role of systemic CD8+ T cells in the control of SIV replication little is known about the local in situ CD8+ T cell immune responses against SIV at the intact tissue level, due to technical limitations. In situ staining, using GagCM9 Qdot 655 multimers, were here combined with laser capture microdissection to detect and collect SIV Gag CM9 specific CD8+ T cells in lymph node tissue from SIV infected rhesus macaques. CD8+ T cells from SIV infected and uninfected rhesus macaques were also collected and compared to the SIV GagCM9 specific CD8+ T cells. Illumina bead array and transcriptional analyses were used to assess the transcriptional profiles and the three different CD8+ T cell populations displayed unique transcriptional patterns. This pilot study demonstrates that rapid and specific immunostaining combined with laser capture microdissection in concert with transcriptional profiling may be used to elucidate phenotypic differences between CD8+ T cells in SIV infection. Such technologies may be useful to determine differences in functional activities of HIV/SIV specific T cells.


Subject(s)
CD8-Positive T-Lymphocytes/virology , Gene Products, gag/analysis , Laser Capture Microdissection/methods , Lymph Nodes/virology , Macaca mulatta/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/isolation & purification , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Gene Products, gag/immunology , Lymph Nodes/immunology , Lymph Nodes/pathology , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Staining and Labeling/methods
19.
BMJ Open ; 5(2): e006627, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25694458

ABSTRACT

OBJECTIVES: Skin biopsies from local sites of herpes simplex virus 2 (HSV-2)-induced ulcers can show infiltrates of inflammatory cells several months after macroscopic healing. We hypothesise that foreskin tissue samples of asymptomatic HSV-2 seropositive men had remaining signs of inflammation at the molecular level. Even in the absence of clinical lesions, genital inflammation may contribute to increased HIV susceptibility on sexual exposure to the virus. SETTING: Foreskin tissue samples were collected from men undergoing elective circumcision in Kisumu, Kenya. PARTICIPANTS: The foreskin tissue samples (n=86) were stratified into study groups based on HSV-2 serology and assessed for mRNA expression of inflammatory markers. Markers of interest were further assessed by immunohistochemical staining within the tissue samples. RESULTS: The two study groups had comparable levels of all molecular markers (CD3, CD4, CD8, CD69, CCR5, HLA-DR, Langerin, DC-SIGN, Mannose Receptor 1, IL-1, IL-6, TNF-α, ß7, IgA, IFN-α, CCL5, E-cadherin, ZO-1 and occludin), except for lower mRNA levels of the epithelial junction protein claudin-1 in the HSV-2 seropositive group (p=0.008). Although mRNA levels of claudin-1 were lower in HSV-2 seropositive individuals, the corresponding protein could be visualised in the foreskin epithelium of all samples tested. CONCLUSIONS: Whereas no general inflammation was demonstrated in the foreskin of asymptomatic HSV-2 seropositive individuals, a decreased expression of claudin-1 indicates a less robust genital epithelial barrier. An intact epithelial barrier is essential for blocking mucosal entry of genital infections, including HIV.


Subject(s)
Claudin-1/metabolism , Foreskin/metabolism , HIV Infections/etiology , Herpes Genitalis/metabolism , Herpesvirus 2, Human , Inflammation Mediators/metabolism , Inflammation/metabolism , Adolescent , Adult , Biomarkers/metabolism , Herpes Genitalis/complications , Herpes Genitalis/virology , Humans , Kenya , Male , RNA, Messenger/metabolism , Young Adult
20.
Biol Reprod ; 92(3): 68, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25588510

ABSTRACT

Currently, whether hormonal contraceptives affect male to female human immunodeficiency virus (HIV) transmission is being debated. In this study, we investigated whether the use of progesterone-based intrauterine devices (pIUDs) is associated with a thinning effect on the ectocervical squamous epithelium, down-regulation of epithelial junction proteins, and/or alteration of HIV target cell distribution in the human ectocervix. Ectocervical tissue biopsies from healthy premenopausal volunteers using pIUDs were collected and compared to biopsies obtained from two control groups, namely women using combined oral contraceptives (COCs) or who do not use hormonal contraceptives. In situ staining and image analysis were used to measure epithelial thickness and the presence of HIV receptors in tissue biopsies. Messenger RNA levels of epithelial junction markers were measured by quantitative PCR. The epithelial thickness displayed by women in the pIUD group was similar to those in the COC group, but significantly thinner as compared to women in the no hormonal contraceptive group. The thinner epithelial layer of the pIUD group was specific to the apical layer of the ectocervix. Furthermore, the pIUD group expressed significantly lower levels of the tight junction marker ZO-1 within the epithelium as compared to the COC group. Similar expression levels of HIV receptors and coreceptors CD4, CCR5, DC-SIGN, and Langerin were observed in the three study groups. Thus, women using pIUD displayed a thinner apical layer of the ectocervical epithelium and reduced ZO-1 expression as compared to control groups. These data suggest that pIUD use may weaken the ectocervical epithelial barrier against invading pathogens, including HIV.


Subject(s)
Cervix Uteri/metabolism , Cervix Uteri/pathology , Contraceptives, Oral, Combined , Intrauterine Devices, Medicated , RNA, Messenger/metabolism , Zonula Occludens-1 Protein/metabolism , Adolescent , Adult , Antigens, CD/metabolism , Biopsy , CD4 Antigens/metabolism , Case-Control Studies , Disease Susceptibility , Epithelium/metabolism , Epithelium/pathology , Female , HIV Infections , Humans , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Receptors, CCR5/metabolism , Receptors, HIV/metabolism , Young Adult , Zonula Occludens-1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL