ABSTRACT
Microcephaly is characterized by an occipitofrontal circumference at least two standard deviations below the mean for age and sex. Neurodevelopmental disorders (NDD) are commonly associated with microcephaly, due to perturbations in brain development and functioning. Given the extensive genetic heterogeneity of microcephaly, managing patients is hindered by the broad spectrum of diagnostic possibilities that exist before conducting molecular testing. We investigated the genetic basis of syndromic microcephaly accompanied by NDD in a Brazilian cohort of 45 individuals and characterized associated clinical features, as well as evaluated the effectiveness of whole-exome sequencing (WES) as a diagnostic tool for this condition. Patients previously negative for pathogenic copy number variants underwent WES, which was performed using a trio approach for isolated index cases (n = 31), only the index in isolated cases with parental consanguinity (n = 8) or affected siblings in familial cases (n = 3). Pathogenic/likely pathogenic variants were identified in 19 families (18 genes) with a diagnostic yield of approximately 45%. Nearly 86% of the individuals had global developmental delay/intellectual disability and 51% presented with behavioral disturbances. Additional frequent clinical features included facial dysmorphisms (80%), brain malformations (67%), musculoskeletal (71%) or cardiovascular (47%) defects, and short stature (54%). Our findings unraveled the underlying genetic basis of microcephaly in half of the patients, demonstrating a high diagnostic yield of WES for microcephaly and reinforcing its genetic heterogeneity. We expanded the phenotypic spectrum associated with the condition and identified a potentially novel gene (CCDC17) for congenital microcephaly.
Subject(s)
Microcephaly , Neurodevelopmental Disorders , Humans , Microcephaly/genetics , Brazil , Male , Female , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Child , Child, Preschool , Adolescent , Exome Sequencing , Syndrome , Young Adult , Cohort Studies , Adult , InfantABSTRACT
Intellectual disability (ID) is an early onset impairment in cognitive functioning and adaptive behavior, affecting approximately 1% of the population worldwide. Extreme skewing of X-chromosome inactivation (XCI) can be associated with ID phenotypes caused by pathogenic variants in the X chromosome. We analyzed the XCI pattern in blood samples of 194 women with idiopathic ID, using the androgen receptor gene (AR) methylation assay. Among the 136 patients who were informative, 11 (8%) presented with extreme or total XCI skewing (≥ 90%), which was significantly higher than expected by chance. Whole-exome data obtained from these 11 patients revealed the presence of dominant pathogenic variants in eight of them, all sporadic cases, resulting in a molecular diagnostic rate of 73% (8/11 patients). All variants were mapped to ID-related genes with dominant phenotypes: four variants in the X-linked genes DDX3X (an XCI escape gene; two cases), WDR45, and PDHA1, and four variants in the autosomal genes KCNB1, CTNNB1, YY1, and ANKRD11. Three of the autosomal genes had no obvious correlation with the observed XCI skewing. However, YY1 is a known transcriptional repressor that acts in the binding of the XIST long noncoding RNA on the inactive X chromosome, providing a mechanistic link between the pathogenic variant and the detected skewed XCI in the carrier. These data confirm that extreme XCI skewing in females with ID is highly indicative of causative X-linked pathogenic variants, and point to the possibility of identifying causative variants in autosomal genes with a XCI role.
Subject(s)
Intellectual Disability , Female , Humans , Intellectual Disability/genetics , X Chromosome Inactivation/genetics , Phenotype , Genes, X-Linked , Chromosomes , Carrier Proteins/geneticsABSTRACT
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.
Subject(s)
DNA Copy Number Variations , Megalencephaly , Humans , DNA Copy Number Variations/genetics , Phosphatidylinositol 3-Kinases/genetics , Genome , Genomics , Megalencephaly/geneticsABSTRACT
Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.
ABSTRACT
The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.
ABSTRACT
17p13.3 microduplications are rare copy number variations (CNVs) associated with variable phenotypes, including facial dysmorphism, developmental delay, intellectual disability, and autism. Typically, when a recognized pathogenic CNV is identified, other genetic factors are not considered. We investigated via whole-exome sequencing the presence of additional variants in four carriers of class I 17p13.3 microduplications. A 730 kb 17p13.3 microduplication was identified in two half-brothers with intellectual disability, but not in a third affected half-brother or blood cells from their normal mother (Family A), thus leading to the hypothesis of maternal germline mosaicism. No additional pathogenic variants were detected in Family A. Two affected siblings carried maternally inherited 450 kb 17p13.3 microduplication (Family B); the three carriers of the microduplication exhibited microcephaly and learning disability/speech impairment of variable degrees. Exome analysis revealed a variant of uncertain significance in RORA, a gene already linked to autism, in the autistic boy; his sister was heterozygous for a CYP1B1 pathogenic variant that could be related to her congenital glaucoma. Besides, both siblings carried a loss-of-function variant in DIP2B, a candidate gene for intellectual disability, which was inherited from their father, who also exhibited learning disability in childhood. In conclusion, additional pathogenic variants were revealed in two affected carriers of class I 17p13.3 microduplication (Family B), probably adding to their phenotypes. These results provided new evidence regarding the contribution of RORA and DIP2B to neurocognitive deficits, and highlighted the importance of full genetic investigation in carriers of CNV syndromes with variable expressivity. Finally, we suggest that microcephaly may be a rare clinical feature also related to the presence of the class I 17p13.3 microduplication.