Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacol Res ; 208: 107376, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39216837

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive degenerative disease of skeletal muscle, characterized by intramuscular inflammation, muscle regeneration disorder and replacement of muscle with fibroadipose tissue. DMD is caused by the absence of normal dystrophy. Impaired self-renew ability and limited differentiation capacity of satellite cells are proved as main reasons for muscle regeneration failure. The deficiency of estrogen impedes the process of muscle regeneration. However, the role of estrogen receptor ß (ERß) in muscle regeneration is still unclear. This study aims to investigate the role and the pharmacological effect of ERß activation on muscle regeneration in mdx mice. This study showed that mRNA levels of ERß and myogenic-related genes both witnessed increasing trends in dystrophic context. Our results revealed that treatment with selective ERß agonist (DPN, diarylpropionitrile) significantly increased myogenic differentiation 1 (MyoD-1) level and promoted muscle regeneration in mdx mice. Similarly, in mdx mice with muscle-specific estrogen receptor α (ERα) ablation, DPN treatment still promoted muscle regeneration. Moreover, we demonstrated that myoblasts differentiation was accompanied by raised nuclear accumulation of ERß. DPN treatment augmented the nuclear accumulation of ERß and, thus, contributed to myotubes formation. One important finding was that forkhead box O3A (FOXO3A), as a pivotal transcription factor in Myod-1 transcription, participated in the ERß-promoted muscle regeneration. Overall, we offered an interesting explanation about the crucial role of ERß during myogenesis.


Subject(s)
Estrogen Receptor beta , Forkhead Box Protein O3 , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne , MyoD Protein , Nitriles , Propionates , Regeneration , Animals , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/agonists , MyoD Protein/genetics , MyoD Protein/metabolism , Regeneration/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Nitriles/pharmacology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Mice , Propionates/pharmacology , Male , Muscle Development/drug effects , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Cell Differentiation/drug effects
2.
Anal Chem ; 96(3): 1251-1258, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38206681

ABSTRACT

Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.


Subject(s)
Glycopeptides , Tandem Mass Spectrometry , Glycopeptides/analysis , Tandem Mass Spectrometry/methods , Electrons , Peptides/chemistry , Polysaccharides/chemistry
3.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38018910

ABSTRACT

The biological function of proteins is determined not only by their static structures but also by the dynamic properties of their conformational ensembles. Numerous high-accuracy static structure prediction tools have been recently developed based on deep learning; however, there remains a lack of efficient and accurate methods for exploring protein dynamic conformations. Traditionally, studies concerning protein dynamics have relied on molecular dynamics (MD) simulations, which incur significant computational costs for all-atom precision and struggle to adequately sample conformational spaces with high energy barriers. To overcome these limitations, various enhanced sampling techniques have been developed to accelerate sampling in MD. Traditional enhanced sampling approaches like replica exchange molecular dynamics (REMD) and frontier expansion sampling (FEXS) often follow the MD simulation approach and still cost a lot of computational resources and time. Variational autoencoders (VAEs), as a classic deep generative model, are not restricted by potential energy landscapes and can explore conformational spaces more efficiently than traditional methods. However, VAEs often face challenges in generating reasonable conformations for complex proteins, especially intrinsically disordered proteins (IDPs), which limits their application as an enhanced sampling method. In this study, we presented a novel deep learning model (named Phanto-IDP) that utilizes a graph-based encoder to extract protein features and a transformer-based decoder combined with variational sampling to generate highly accurate protein backbones. Ten IDPs and four structured proteins were used to evaluate the sampling ability of Phanto-IDP. The results demonstrate that Phanto-IDP has high fidelity and diversity in the generated conformation ensembles, making it a suitable tool for enhancing the efficiency of MD simulation, generating broader protein conformational space and a continuous protein transition path.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Protein Conformation , Molecular Dynamics Simulation , Protein Domains
4.
Eur J Pharmacol ; 933: 175277, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36113553

ABSTRACT

Skeletal muscle transforming growth factor-ß-activated kinase 1 (TAK1) continuous excessive phosphorylation was observed in Duchenne muscular dystrophy (DMD) patients and mdx mice. Inhibiting TAK1 phosphorylation ameliorated fibrosis and muscular atrophy, while TAK1 knockout also impaired muscle regeneration. The definite effect and mechanism of p-TAK1 in muscle regeneration disorder is still obscure. In this study, BaCl2-induced acute muscle injury model was used to investigate the role of p-TAK1 in myoblast proliferation and differentiation phase. The results showed that TAK1 phosphorylation was significantly up-regulated in proliferation phase along with Keap1/Nrf2/HO-1 signaling pathway activation, which was down-regulated in differentiation phase yet. In C2C12 cells, inhibiting TAK1 phosphorylation markedly suppressed the expression of heme oxygenase-1 (HO-1), and both myoblast proliferation and differentiation were inhibited. As for activation, p-TAK1 promoted myoblast proliferation via up-regulating HO-1 level. However, excessive TAK1 phosphorylation (induced by 20 ng·mL-1 TGF-ß1) notably up-regulated HO-1 expression, inhibiting myogenic differentiation antigen (MyOD) and myogenic differentiation. A mild p-TAK1 level (induced by 5 or 10 ng·mL-1 TGF-ß1) was beneficial for myoblast differentiation. In mdx mice, robust myoblast proliferation and differentiation arrest were observed with high p-TAK1 level in skeletal muscle. HO-1 expression was significantly up-regulated. TAK1 phosphorylation inhibitor NG25 (N-[4-[(4-ethylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl]-4-methyl-3-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)benzamide) significantly inhibited HO-1 expression, relieved excessive myoblast proliferation and differentiation arrest, promoted new myofiber formation, and eventually improved muscle function. In conclusion, p-TAK1 acted as "a switch" between proliferation and differentiation phase. Mitigating p-TAK1 level transformed myoblast excessive proliferation phase into differentiation phase in mdx mouse via regulating HO-1 expression.


Subject(s)
Muscular Dystrophy, Duchenne , Transforming Growth Factor beta1 , Animals , Benzamides , Cell Differentiation , Cell Proliferation , Heme Oxygenase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , MAP Kinase Kinase Kinases , Membrane Proteins , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Myoblasts , NF-E2-Related Factor 2/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL