Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122880, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37216820

ABSTRACT

Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively. Direct simultaneous determination with normal fluorescence spectroscopy was difficult. The use of synchronous fluorescence spectroscopy for analyzing the studied drugs in ethanol at Δλ = 80 nm improved spectral resolution and enabled the determination of favipiravir and aspirin in the plasma matrix at 437 nm and 384 nm, respectively. The method described allowed sensitive determination of favipiravir and aspirin over a concentration range of 10-500 ng/mL and 35-1600 ng/mL, respectively. The described method was validated with respect to the ICH M10 guidelines and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in the spiked plasma matrix. Moreover, the compliance of the method with the concepts of environmentally friendly analytical chemistry was evaluated using two metrics, the Green Analytical Procedure Index and the AGREE tool. The results showed that the described method was consistent with the accepted metrics for green analytical chemistry.


Subject(s)
Aspirin , COVID-19 , Humans , Spectrometry, Fluorescence/methods , COVID-19 Drug Treatment , Ethanol
2.
BMC Chem ; 17(1): 24, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949535

ABSTRACT

A sequential spectrophotometric resolution technique (SSRT) was developed in this study without the use of systematic separation procedures to determine drug of a quaternary combination; caffeine (CAF), pseudoephedrine (PSE), doxylamine succinate (DOX), and paracetamol (PAR). Their presence in a tablet with a gap ratio of 3:3:1:150, respectively, and their overlapping spectra with low absorptivities make their resolution and determination impossible without prior separation. successive ratio subtraction technique (SRST) and constant multiplication method were used to solve these problems. Furthermore, an in-lab sample enrichment technique was applied to increase minor components concentration and consequently their absorbanses (CAF, PSE, and DOX). The D0 absorption spectra were generated by successive ratios followed by subtraction and multiplication of the constants. The maximum absorbances of the drugs tested, namely (CAF, PSE, DOX and PAR) were measured at wavelengths of 272.0, 257.0, 260.0, and 248.0 nm, respectively. The limits of detection (LOD) and limits of quantification (LOQ) were 0.021, 0.124, 0.186, 0.137 and 0.070, 0.414, 0.621, 0.456 (µg/mL), respectively. The linearitiy ranges (µg/mL) were 1.0-22.0, 1.0-24.0, 10.0-90.0 and 1.0-15.0 for CAF, PSE, DOX, and PAR, respectively. The International Conference on Harmonization (ICH) guidelines were applied for method validation, and the results obtained were within the limited parameters. The finding results were compared to official and/or published analytical methods to determine the procedure's reliability. It was noted that there was no actual difference in accuracy and precision between both meyhods. The proposed technique is sensitive, selective and economic;so it can be applied to the simultaneous analysis of these drugs in their commercial tablets and/or in quality-control laboratories.

SELECTION OF CITATIONS
SEARCH DETAIL