Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 300: 110626, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33180706

ABSTRACT

The sunflower (Helianthus annuus L.) genome encodes six proteins containing a TLDc domain, typical of the eukaryotic OXidation Resistance (OXR) protein family. Expression of sunflower HaOXR2 in Arabidopsis generated plants with increased rosette diameter, higher number of leaves and increased seed production. Maize inbred lines expressing HaOXR2 also showed increased total leaf area per plant. In addition, heterologous expression of HaOXR2 induced an increase in the oxidative stress tolerance in Arabidopsis and maize. Maize transgenic plants expressing HaOXR2 experienced less oxidative damage and exhibited increased photosynthetic performance and efficiency than non-transgenic segregant plants after treatment of leaves with the reactive oxygen species generating compound Paraquat. Expression of HaOXR2 in maize also improved tolerance to waterlogging. The number of expanded leaves, aerial biomass, and stem height and cross-section area were less affected by waterlogging in HaOXR2 expressing plants, which also displayed less aerial tissue damage under these conditions. Transgenic plants also showed an increased production of roots, a typical adaptive stress response. The results show the existence of functional conservation of OXR proteins in dicot and monocot plants and indicate that HaOXR2 could be useful to improve plant performance under conditions that increase oxidative stress.


Subject(s)
Adaptation, Physiological/genetics , Dehydration/genetics , Oxidative Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/physiology , Dehydration/physiopathology , Gene Expression Regulation, Plant , Genes, Plant , Helianthus/genetics , Oxidative Stress/physiology , Plants, Genetically Modified/metabolism
2.
Plant Physiol ; 184(2): 1112-1127, 2020 10.
Article in English | MEDLINE | ID: mdl-32727912

ABSTRACT

Arabidopsis (Arabidopsis thaliana) OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen Pseudomonas syringae oxr2 mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing AtOXR2 (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway. Accordingly, defense phenotypes are dependent on SA synthesis and SA perception pathways, since they are lost in isochorismate synthase1/salicylic acid induction deficient2 and nonexpressor of pathogenesis-related genes1 (npr1) mutant backgrounds. Overexpression of AtOXR2 leads to faster and stronger oxidative burst in response to the bacterial flagellin peptide flg22 Moreover, AtOXR2 affects the nuclear localization of the transcriptional coactivator NPR1, a master regulator of SA signaling. oeOXR2 plants have increased levels of total glutathione and a more oxidized cytosolic redox cellular environment under normal growth conditions. Therefore, AtOXR2 contributes to establishing plant protection against infection by P. syringae acting on the activity of the SA pathway.


Subject(s)
Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/physiology , Disease Resistance/genetics , Disease Resistance/physiology , Pseudomonas syringae/pathogenicity , Salicylic Acid/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Mitochondrial Proteins/metabolism , Mutation , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...