Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Sci Rep ; 14(1): 14718, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926456

ABSTRACT

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower p(181)Tau and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.


Subject(s)
Alzheimer Disease , Biomarkers , Polymorphism, Single Nucleotide , Synapses , tau Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Biomarkers/cerebrospinal fluid , Brain/metabolism , Brain/pathology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Synapses/metabolism , Synapses/pathology , Synaptosomal-Associated Protein 25/metabolism , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/cerebrospinal fluid , Synaptotagmin I/metabolism , Synaptotagmin I/genetics , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism
2.
Cancer Res Commun ; 4(7): 1702-1714, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38904264

ABSTRACT

Phosphatase of regenerating liver 2 (also known as PTP4A2) has been linked to cancer progression. Still, its exact role in glioblastoma (GBM), the most aggressive type of primary brain tumor, remains elusive. In this study, we report that pharmacologic treatment using JMS-053, a pan-phosphatase of regenerating liver inhibitor, inhibits GBM cell viability and spheroid growth. We also show that PTP4A2 is associated with a poor prognosis in gliomas, and its expression correlates with GBM aggressiveness. Using a GBM orthotopic xenograft model, we show that PTP4A2 overexpression promotes tumor growth and reduces mouse survival. Furthermore, PTP4A2 deletion leads to increased apoptosis and proinflammatory signals. Using a syngeneic GBM model, we show that depletion of PTP4A2 reduces tumor growth and induces a shift in the tumor microenvironment (TME) toward an immunosuppressive state. In vitro assays show that cell proliferation is not affected in PTP4A2-deficient or -overexpressing cells, highlighting the importance of the microenvironment in PTP4A2 functions. Collectively, our results indicate that PTP4A2 promotes GBM growth in response to microenvironmental pressure and support the rationale for targeting PTP4A2 as a therapeutic strategy against GBM. SIGNIFICANCE: High levels of PTP4A2 are associated with poor outcomes in patients with glioma and in mouse models. PTP4A2 depletion increases apoptosis and proinflammatory signals in GBM xenograft models, significantly impacts tumor growth, and rewires the TME in an immunocompetent host. PTP4A2 effects in GBM are dependent on the presence of the TME.


Subject(s)
Brain Neoplasms , Disease Progression , Glioblastoma , Tumor Microenvironment , Glioblastoma/pathology , Glioblastoma/genetics , Animals , Humans , Mice , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Apoptosis , Macrophages/metabolism , Xenograft Model Antitumor Assays
3.
bioRxiv ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38766183

ABSTRACT

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower P-tau181 and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.

4.
Front Med (Lausanne) ; 11: 1364778, 2024.
Article in English | MEDLINE | ID: mdl-38707187

ABSTRACT

In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.

5.
J Cachexia Sarcopenia Muscle ; 15(3): 1041-1053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481033

ABSTRACT

BACKGROUND: The interdependence of cytokines and appetite-modifying hormones implicated in cancer anorexia-cachexia syndrome (CACS) remains unclear. This study aimed to regroup these cytokines and hormones into distinct inflammatory (or non-inflammatory) pathways and determine whether these pathways can classify patients with CACS phenotypes. METHODS: Clinical characteristics of 133 patients [61.7% male; mean age = 63.4 (SD: 13.1) years] with advanced cancer prior to oncology treatments were documented, including weight loss history. Patients completed the Functional Assessment of Anorexia-Cachexia Therapy (FAACT) questionnaire and Timed Up and Go test and had their sex-standardized skeletal muscle index (z-SMI) and fat mass index (z-FMI) derived using computed tomography scans. Their plasma levels of cytokines and appetite-modifying hormones were also determined. Date of death was recorded. Exploratory factor analysis (EFA) was used to regroup 15 cytokines and hormone into distinct inflammatory pathways (factors). For each patient, regression factor scores (RFS), which tell how strongly the patient associates with each factor, were derived. Two-step cluster analysis on the RFS was used to classify patients into groups. CACS phenotypes were correlated with RFS and compared between groups. Groups' survival was estimated using Kaplan-Meier analysis. RESULTS: Patients had low z-SMI (mean = -3.78 cm2/m2; SD: 8.88) and z-FMI (mean = 0.08 kg2/m2; SD: 56.25), and 62 (46.6%) had cachexia. EFA identified three factors: (F-1) IFN-γ, IL-1ß, Il-4, IL-6, IL-10, IL-12, TGFß1 (positive contribution), and IL-18 (negative); (F-2) IL-8, IL-18, MCP-1, TGFß1, TNF-α (positive), and ghrelin (negative); and (F-3) TRAIL and leptin (positive), and TGFß1 and adiponectin (negative). RFS-1 was associated with cachexia (P = 0.002); RFS-2, with higher CRP (P < 0.0001) and decreased physical function (P = 0.01); and RFS-3 with better appetite (P = 0.04), lower CRP (P = 0.002), higher z-SMI (P = 0.04) and z-FMI (P < 0.0001), and less cachexia characteristics (all P < 0.001). Four patient groups were identified with specific RFS clusters aligning with the CACS continuum from no cachexia to pre-cachexia, cachexia, and terminal cachexia. Compared to the other two groups, groups 1 and 2 had higher plasma levels of IL-18 and TRAIL. Group 1 also had lower inflammatory cytokines, adiponectin, and CRP compared to the other three groups. Group 3 had inflammatory cytokine levels similar to group 2, except for TNF-α and leptin which were lower. Group 4 had very high inflammatory cytokines, adiponectin, and CRP compared to the other 3 groups (all P < 0.0001). Groups 3 and 4 had worse cachexia characteristics (P < 0.05) and shorter survival (log rank: P = 0.0009) than the other two groups. CONCLUSIONS: This exploratory study identified three distinct pathways of inflammation, or lack thereof, characterizing different CACS phenotypes.


Subject(s)
Anorexia , Cachexia , Cytokines , Inflammation , Neoplasms , Humans , Male , Cachexia/etiology , Female , Middle Aged , Anorexia/etiology , Neoplasms/complications , Inflammation/blood , Cytokines/blood , Aged , Syndrome
6.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166031

ABSTRACT

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Subject(s)
Protein Serine-Threonine Kinases , Receptors, Antigen, T-Cell , T-Lymphocytes , Animals , Humans , Mice , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Threonine/metabolism
8.
Genes Dev ; 37(15-16): 678-680, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37673461

ABSTRACT

Receptor protein tyrosine phosphatases (RPTPs) are involved in a broad list of cellular, developmental, and physiological functions. Altering their expression leads to significant changes in protein phosphorylation linked to a growing list of human diseases, including cancers and neurological disorders. In this issue of Genes & Development, Qian and colleagues (pp. 743-759) present the identification of a monoclonal antibody targeting PTPRD extracellular domain-inducing dimerization and inhibition of the phosphatase activities, causing the proteolysis of dimeric PTPRD by a mechanism involving intracellular degradation pathways. Their study supports the potential of modulating PTPRD via its extracellular domains. This opens a new framework in the clinical manipulation of PTPRD and its closely related family members.


Subject(s)
Immunoglobulins , Protein Tyrosine Phosphatases , Humans , Dimerization , Cell Differentiation , Protein Tyrosine Phosphatases/genetics , Tyrosine
9.
Immun Ageing ; 20(1): 31, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400834

ABSTRACT

BACKGROUND: Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS: We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS: Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.

10.
Proc Natl Acad Sci U S A ; 120(14): e2221083120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972446

ABSTRACT

Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.


Subject(s)
Magnesium , TRPM Cation Channels , Magnesium/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Signal Transduction , Energy Metabolism
11.
Cancer Immunol Immunother ; 72(6): 1343-1353, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36441193

ABSTRACT

Dendritic cells have been at the forefront of cancer-immunotherapy research for over 2 decades. They elicited that attention by having an unprecedented capacity to mount T cells responses against tumors. However, the clinical use of DC-based vaccination against established malignancies has resulted in limited clinical benefits. Several factors are responsible for limiting the efficacy of DC-based immunotherapy, such as the harmful influence of the tumor microenvironment on DCs activity. New insights into the inner process of DC-mediated T cell activation have supported the development of new strategies that potentiate DCs-based therapies. Herein, we identify signaling cascades that have recently been targeted by small molecules and biologicals to promote the activation of monocyte-derived DCs and decrease their susceptibility to becoming tolerogenic. While Statins can markedly enhance antigen presentation, protein kinase inhibitors can be used to increase the expression of co-receptors and adhesion molecules. STAT3 and IDO can be modulated to limit the production of regulatory factors that work against differentiation and activation. The targeting of multiple pathways simultaneously has also been found to produce synergism and drastically enhance DCs activity. Some of these strategies have recently yielded positive results in clinical settings against established malignancies such as non-small cell lung cancer. The emergence of these approaches opens the door for a new generation of potent dendritic cell-based therapeutics to fight cancer.


Subject(s)
Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Dendritic Cells , Carcinoma, Non-Small-Cell Lung/metabolism , Monocytes , Lung Neoplasms/metabolism , Immunotherapy/methods , Tumor Microenvironment
12.
Nat Commun ; 13(1): 6816, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36433951

ABSTRACT

Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.


Subject(s)
Acetaminophen , Cation Transport Proteins , Chemical and Drug Induced Liver Injury , Liver Diseases , Magnesium , Animals , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Cyclins/genetics , Cyclins/metabolism , Liver Diseases/blood , Liver Diseases/genetics , Liver Diseases/prevention & control , Magnesium/blood , Magnesium/therapeutic use , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism
13.
Sci Rep ; 12(1): 14355, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999262

ABSTRACT

Communication between gut microbiota and the brain is an enigma. Alterations in the gut microbial community affects enteric metabolite levels, such as short chain fatty acids (SCFAs). SCFAs have been proposed as a possible mechanism through which the gut microbiome modulate brain health and function. This study analyzed for the first time the effects of SCFAs at levels reported in human systemic circulation on SH-SY5Y human neuronal cell energy metabolism, viability, survival, and the brain lipidome. Cell and rat brain lipidomics was done using high resolution mass spectrometry (HRMS). Neuronal cells viability, survival and energy metabolism were analyzed via flow cytometer, immunofluorescence, and SeahorseXF platform. Lipidomics analysis demonstrated that SCFAs significantly remodeled the brain lipidome in vivo and in vitro. The most notable remodulation was observed in the metabolism of phosphatidylethanolamine plasmalogens, and mitochondrial lipids carnitine and cardiolipin. Increased mitochondrial mass, fragmentation, and hyperfusion occurred concomitant with the altered mitochondrial lipid metabolism resulting in decreased neuronal cell respiration, adenosine triphosphate (ATP) production, and increased cell death. This suggests SCFAs at levels observed in human systemic circulation can adversely alter the brain lipidome and neuronal cell function potentially negatively impacting brain health outcomes.


Subject(s)
Gastrointestinal Microbiome , Neuroblastoma , Animals , Apoptosis , Fatty Acids, Volatile/metabolism , Humans , Lipid Metabolism , Rats
14.
Sci Signal ; 15(730): eabn6875, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35439023

ABSTRACT

Increased production of reactive oxygen species plays an essential role in the pathogenesis of several diseases, including cardiac hypertrophy. In our search to identify redox-sensitive targets that contribute to redox signaling, we found that protein tyrosine phosphatase 1B (PTP1B) was reversibly oxidized and inactivated in hearts undergoing hypertrophy. Cardiomyocyte-specific deletion of PTP1B in mice (PTP1B cKO mice) caused a hypertrophic phenotype that was exacerbated by pressure overload. Furthermore, we showed that argonaute 2 (AGO2), a key component of the RNA-induced silencing complex, was a substrate of PTP1B in cardiomyocytes and in the heart. Our results revealed that phosphorylation at Tyr393 and inactivation of AGO2 in PTP1B cKO mice prevented miR-208b-mediated repression of thyroid hormone receptor-associated protein 1 (THRAP1; also known as MED13) and contributed to thyroid hormone-mediated cardiac hypertrophy. In support of this conclusion, inhibiting the synthesis of triiodothyronine (T3) with propylthiouracil rescued pressure overload-induced hypertrophy and improved myocardial contractility and systolic function in PTP1B cKO mice. Together, our data illustrate that PTP1B activity is cardioprotective and that redox signaling is linked to thyroid hormone responsiveness and microRNA-mediated gene silencing in pathological hypertrophy.


Subject(s)
MicroRNAs , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Cardiomegaly/metabolism , Mediator Complex , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
15.
Life Sci Alliance ; 5(5)2022 05.
Article in English | MEDLINE | ID: mdl-35193953

ABSTRACT

ER stress is mediated by three sensors and the most evolutionary conserved IRE1α signals through its cytosolic kinase and endoribonuclease (RNase) activities. IRE1α RNase activity can either catalyze the initial step of XBP1 mRNA unconventional splicing or degrade a number of RNAs through regulated IRE1-dependent decay. Until now, the biochemical and biological outputs of IRE1α RNase activity have been well documented; however, the precise mechanisms controlling whether IRE1α signaling is adaptive or pro-death (terminal) remain unclear. We investigated those mechanisms and hypothesized that XBP1 mRNA splicing and regulated IRE1-dependent decay activity could be co-regulated by the IRE1α RNase regulatory network. We identified that RtcB, the tRNA ligase responsible for XBP1 mRNA splicing, is tyrosine-phosphorylated by c-Abl and dephosphorylated by PTP1B. Moreover, we show that the phosphorylation of RtcB at Y306 perturbs RtcB interaction with IRE1α, thereby attenuating XBP1 mRNA splicing. Our results demonstrate that the IRE1α RNase regulatory network is dynamically fine-tuned by tyrosine kinases and phosphatases upon various stresses and that the extent of RtcB tyrosine phosphorylation determines cell adaptive or death outputs.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Endoribonucleases/genetics , Endoribonucleases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleases , Tyrosine/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
16.
Gut ; 71(1): 89-99, 2022 01.
Article in English | MEDLINE | ID: mdl-33563644

ABSTRACT

OBJECTIVES: Alterations in the intestinal microbiota are linked with a wide range of autoimmune and inflammatory conditions, including inflammatory bowel diseases (IBD), where pathobionts penetrate the intestinal barrier and promote inflammatory reactions. In patients with IBD, the ability of intestinal macrophages to efficiently clear invading pathogens is compromised resulting in increased bacterial translocation and excessive immune reactions. Here, we investigated how an IBD-associated loss-of-function variant in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene, or loss of PTPN2 expression affected the ability of macrophages to respond to invading bacteria. DESIGN: IBD patient-derived macrophages with wild-type (WT) PTPN2 or carrying the IBD-associated PTPN2 SNP, peritoneal macrophages from WT and constitutive PTPN2-knockout mice, as well as mice specifically lacking PTPN2 in macrophages were infected with non-invasive K12 Escherichia coli, the human adherent-invasive E. coli (AIEC) LF82, or a novel mouse AIEC (mAIEC) strain. RESULTS: Loss of PTPN2 severely compromises the ability of macrophages to clear invading bacteria. Specifically, loss of functional PTPN2 promoted pathobiont invasion/uptake into macrophages and intracellular survival/proliferation by three distinct mechanisms: Increased bacterial uptake was mediated by enhanced expression of carcinoembryonic antigen cellular adhesion molecule (CEACAM)1 and CEACAM6 in PTPN2-deficient cells, while reduced bacterial clearance resulted from defects in autophagy coupled with compromised lysosomal acidification. In vivo, mice lacking PTPN2 in macrophages were more susceptible to mAIEC infection and mAIEC-induced disease. CONCLUSIONS: Our findings reveal a tripartite regulatory mechanism by which PTPN2 preserves macrophage antibacterial function, thus crucially contributing to host defence against invading bacteria.


Subject(s)
Bacterial Adhesion , Escherichia coli Infections/immunology , Macrophages/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/immunology , Animals , Antigens, CD/metabolism , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules/metabolism , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/physiology , GPI-Linked Proteins/metabolism , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Mice, Knockout , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
17.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34623320

ABSTRACT

Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.


Subject(s)
Intestinal Mucosa/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Tight Junctions/metabolism , Adolescent , Adult , Aged , Animals , Claudins/metabolism , Disease Models, Animal , Female , Genome-Wide Association Study , Humans , In Vitro Techniques , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Permeability , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Tight Junctions/pathology , Young Adult
18.
Stem Cell Reports ; 16(7): 1749-1762, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34214487

ABSTRACT

Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured. Metabolic analyses revealed significant loss of all purine derivatives, except hypoxanthine, and impaired glycolysis and oxidative phosphorylation. real-time glucose tracing demonstrated increased shunting to the pentose phosphate pathway for de novo purine synthesis at the expense of ATP production. Purine depletion in dopaminergic progenitor cells resulted in loss of RHEB, impairing mTORC1 activation. These data demonstrate dopaminergic-specific effects of purine salvage deficiency and unexpectedly reveal that dopaminergic progenitor cells are programmed to a high-energy state prior to higher energy demands of terminally differentiated cells.


Subject(s)
Dopaminergic Neurons/metabolism , Energy Metabolism , Lesch-Nyhan Syndrome/metabolism , Lesch-Nyhan Syndrome/pathology , Mesencephalon/pathology , Biomarkers/metabolism , Cell Lineage , Cerebral Cortex/pathology , Glucose/metabolism , Glycolysis , Humans , Hypoxanthine Phosphoribosyltransferase/deficiency , Lesch-Nyhan Syndrome/enzymology , Mechanistic Target of Rapamycin Complex 1/metabolism , Neural Stem Cells/metabolism , Oxidative Phosphorylation , Pentose Phosphate Pathway , Purines/metabolism
19.
FASEB J ; 35(7): e21708, 2021 07.
Article in English | MEDLINE | ID: mdl-34169549

ABSTRACT

Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.


Subject(s)
Energy Metabolism/physiology , Mitochondrial Dynamics/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Tyrosine/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , HCT116 Cells , HEK293 Cells , Humans , Phosphorylation/physiology , Protein-Tyrosine Kinases/metabolism , RNA, Small Interfering/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology
20.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34089346

ABSTRACT

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cyclins/metabolism , Homeostasis , Magnesium/metabolism , ADP-Ribosylation Factors/genetics , Biological Transport , Cyclins/genetics , Glycosylation , HEK293 Cells , Humans , Models, Molecular , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...