Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631922

ABSTRACT

When seeds sown in the soil become wet, their hulls secrete viscous matter that can retain water and thus support germination. Flaxseed mucilage (FSM) is an example of such a material and is attractive for food, cosmetic, and pharmaceutical applications due to its suitable rheological properties. FSM consists mainly of two polysaccharides, namely, arabinoxylan and rhamnogalacturonan I, and it also contains some proteins, minerals, and phenolic compounds. The genotype and the year of the flax harvest can significantly affect the composition and functional properties of FSM. In this work, FSM samples were isolated from flax seeds of different cultivars and harvest years, and their structural and rheological properties were compared using statistical methods. The samples showed significant variability in composition and rheological properties depending on the cultivar and storage time. It was found that the ratio of two polysaccharide fractions and the contribution of less-prevalent proteins are important factors determining the rheological parameters of FSM, characterizing the shear-thinning, thixotropic, and dynamic viscoelastic behavior of this material in aqueous solutions. The yield strength and the hysteresis loop were found to be associated with the contribution of the pectin fraction, which included homogalacturonan and rhamnogalacturonan I. In contrast, the shear-thinning and especially the dynamic viscoelastic properties depended on the arabinoxylan content. Proteins also affected the viscoelastic properties and maintained the elastic component of FSM in the solution. The above structural and rheological characteristics should be taken into account when considering effective applications for this material.

2.
Int J Biol Macromol ; 165(Pt B): 3156-3168, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33031852

ABSTRACT

Hydrogels based on natural and modified polysaccharides represent growing group of suitable matrices for the construction of effective wound healing materials. Bioactive tripeptide glycyl-l-histidyl-l-lysine and amino acid α-l-arginine are known to accelerate wound healing and skin repair. In this study, hydrogels based on low-methoxyl amidated citrus pectin or flaxseed gum were prepared and used for the transport of these healing agents to the experimental cutting wounds affected by extensive skin damage. Fourier-transform infrared spectroscopy, rheology, differential scanning calorimetry, scanning electron microscopy, swelling and release tests confirmed that these hydrogels differed in structure and physical properties. The cationic tripeptide was found to bind to carboxylic groups in LMA pectin, and the C3OH hydroxyl and ring oxygen O5 are involved in this interaction. The pectin hydrogel showed high viscosity and strong elastic properties, while the flaxseed gum hydrogel was characterised as a viscoelastic system of much lower viscosity. The former hydrogel released the drugs very slowly, while the latter hydrogel demonstrated zero order releasing kinetics optimal for drug delivery. In the in vivo wound healing testing on rats, both polysaccharide hydrogels improved the healing process mediated by the mentioned biomolecules. The tripeptide applied in the hydrogels showed significantly higher healing degree and lower healing time than in the control animals without treatment and when it was applied in an aqueous solution. Despite the absence of a synergistic effect, the mixture of the tripeptide and α-l-arginine in the hydrogels was also quite effective in wound healing. According to histological analysis, complete healing was achieved only when using the tripeptide in the flaxseed gum hydrogel. These observations might have an important prospect in clinical application of polysaccharide hydrogels.


Subject(s)
Flax/chemistry , Gingiva/chemistry , Pectins/chemistry , Wound Healing/drug effects , Animals , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Microscopy, Electron, Scanning , Oligopeptides/chemistry , Oligopeptides/pharmacology , Pectins/pharmacology , Rats , Skin/drug effects , Skin/injuries , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL