Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38623980

ABSTRACT

AIM AND OBJECTIVE: The aim of this study was to prepare polyvinyl alcohol/acrylic acid (PVA/AA) hydrogels for the controlled release of diclofenac sodium and to develop PVA/AA hydrogels as controlled release carriers to overcome not only the side effects of diclofenac sodium but also sustain its release for an extended period. BACKGROUND: Diclofenac sodium is employed for relieving pain and fever. The half-life of diclofenac sodium is very short (1-2 h). Hence, multiple intakes of diclofenac sodium are required to maintain a constant pharmacological action. Multiple GI adverse effects are produced as a result of diclofenac sodium intake. METHOD: A free radical polymerization technique was used for crosslinking PVA with AA in the presence of APS. EGDMA was used as a cross-linker. FTIR and XRD confirmed the preparation and loading of the drug by prepared hydrogels. An increase in the thermal stability of PVA was shown by TGA and DSC analysis. Surface morphology was investigated by SEM. Similarly, water penetration and drug loading were demonstrated by porosity and drug loading studies. The pH-sensitive nature of PVA/AA hydrogels was investigated at different pH values by swelling and drug release studies. RESULTS: The development and drug loading of PVA/AA hydrogels were confirmed by FTIR and XRD analysis. TGA and DSC indicated high thermal stability of prepared hydrogels as compared to unreacted PVA. SEM indicated a hard and compact network of developed hydrogels. The swelling and drug release studies indicated maximum swelling and drug release at high pH as compared to low pH values, indicating the pH-sensitive nature of prepared hydrogels. Moreover, we demonstrated that drug release was sustained for a prolonged time in a controlled pattern by prepared hydrogels by comparing the drug release of the developed hydrogels with the commercial product Cataflam. CONCLUSION: The results indicated that prepared PVA/AA hydrogels can be used as an alternative approach for the controlled delivery of diclofenac sodium.

2.
Article in English | MEDLINE | ID: mdl-38204236

ABSTRACT

BACKGROUND: Buspirone is used for the management of depression and anxiety disorders. Due to its short half-life and low bioavailability, it requires multiple daily doses and is associated with some side effects. AIM: This study aimed to develop chitosan-based hydrogels as drug-controlled release carriers. OBJECTIVE: The objective of this study is to prepare chitosan-based hydrogels as controlled release carriers in order to overcome the side effects of buspirone HCl and improve patients' compliance and their life quality. METHODS: Polymer chitosan was polymerized with two monomers, acrylic acid and itaconic acid, to synthesize pH-sensitive hydrogel. The Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were performed to confirm the structure formation and thermal stability. Water penetration capability and loading of the drug were performed by porosity and drug loading studies. The swelling and dissolution tests were performed to analyze the pH-sensitive nature of the developed hydrogels. RESULTS: FTIR, TGA, and DSC demonstrated that the chitosan-based hydrogels were successfully prepared. An increase in water penetration and drug loading into the hydrogel network was seen with the high incorporation of chitosan, acrylic acid, and itaconic acid. The swelling and dissolution studies revealed that prepared hydrogel offered the greatest swelling and drug release at a high pH of 7.4. The swelling and drug release from the hydrogel were affected by the concentrations of the incorporated contents. A controlled release of the drug was achieved by using chitosan-based hydrogel as a delivery carrier compared to commercial tablets of buspirone. CONCLUSION: The results showed that the developed chitosan-based hydrogel can be considered one of the most suitable drug carrier systems for the controlled delivery of buspirone.

3.
Curr Pharm Des ; 29(31): 2489-2500, 2023.
Article in English | MEDLINE | ID: mdl-37881070

ABSTRACT

BACKGROUND: Diclofenac sodium has a short half-life (about 1.5 hours), requiring repeated administration, and as a result, serious complications, such as GI bleeding, peptic ulcer, and kidney and liver dysfunction, are generated. Hence, a sustained/controlled drug delivery system is needed to overcome the complications caused by the administration of diclofenac sodium. AIMS: This study aimed to fabricate and evaluate carbopol/polyvinyl alcohol-based pH-sensitive hydrogels for controlled drug delivery. OBJECTIVE: pH-sensitive carbopol/polyvinyl alcohol graft-poly(acrylic acid) hydrogels (Cp/PVA-g-PAa hydrogels) were developed for the controlled delivery of diclofenac sodium. METHODS: The combination of carbopol/polyvinyl alcohol, acrylic acid, and ethylene glycol dimethacrylate was used as polymer, monomer, and cross-linker, respectively. The effects of the formulation's composition on porosity, swelling index, and release pattern of diclofenac sodium from the developed hydrogels were investigated. RESULTS: An increase in porosity and swelling was observed with the increasing amounts of carbopol and acrylic acid, whereas polyvinyl alcohol showed the opposite effect. Due to the formation of a highly viscous system, the drug release decreased with the increasing concentrations of carbopol and polyvinyl alcohol while increased with increasing acrylic acid concentration. The pH-responsive properties of the fabricated hydrogels were demonstrated by dynamic swelling and drug release studies at three different pH values. Higher dynamic swelling and diclofenac sodium (model drug) release were found at high pH values compared to low pH values, i.e., pH 7.4 > 4.6 > 1.2, respectively. Cytotoxicity studies reported no toxic effect of the prepared hydrogels, thus indicating that the prepared hydrogels are safe to be used on clinical basis. CONCLUSION: The prepared carbopol/polyvinyl alcohol crosslinked hydrogel can be used as a promising carrier for the controlled release of drugs.


Subject(s)
Diclofenac , Polyvinyl Alcohol , Humans , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Drug Delivery Systems , Hydrogels/chemistry , Hydrogen-Ion Concentration , Drug Liberation
4.
ACS Omega ; 8(26): 23991-24002, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426260

ABSTRACT

The objective of this study is to design a polymeric network of nanogels for sustained release of caffeine. Therefore, alginate-based nanogels were fabricated by a free-radical polymerization technique for the sustained delivery of caffeine. Polymer alginate was crosslinked with monomer 2-acrylamido-2-methylpropanesulfonic acid by crosslinker N',N'-methylene bisacrylamide. The prepared nanogels were subjected to sol-gel fraction, polymer volume fraction, swelling, drug loading, and drug release studies. A high gel fraction was seen with the increasing feed ratio of polymer, monomer, and crosslinker. Greater swelling and drug release were observed at pH 4.6 and 7.4 as compared to pH 1.2 due to the deprotonation and protonation of functional groups of alginate and 2-acrylamido-2-methylpropanesulfonic acid. An increase was observed in swelling, loading, and release of the drug with the incorporation of a high feed ratio of polymer and monomer, while a reduction was seen with the increase in crosslinker feed ratio. Similarly, an HET-CAM test was used to evaluate the safety of the prepared nanogels, which showed that the prepared nanogels have no toxic effect on the chorioallantoic membrane of fertilized chicken eggs. Similarly, different characterizations techniques such as FTIR, DSC, SEM, and particle size analysis were carried out to determine the development, thermal stability, surface morphology, and particle size of the synthesized nanogels, respectively. Thus, we can conclude that the prepared nanogels can be used as a suitable agent for the sustained release of caffeine.

5.
Int J Nanomedicine ; 18: 3879-3896, 2023.
Article in English | MEDLINE | ID: mdl-37483315

ABSTRACT

Background: Simultaneous anti-Cutibacterium acnes and anti-inflammatory actions are highly beneficial in treating acne vulgaris. In this study, we present novel anti-acne nanovesicles based on liposomes loaded with proteinase K (PK), retinoic acid (RA), and soyaethyl morpholinium ethosulfate (SME) to achieve an effective and safe treatment. Materials and Methods: This study examined in vitro planktonic and biofilm C. acnes elimination, as well as the keratinocyte proliferation suppression by liposomes. The multifunctional liposomes for treating C. acnes in mice were also evaluated. Results: We acquired multifunctional liposomes with a size of 71 nm and zeta potential of 31 mV. The antimicrobial activity of SME was enhanced after liposomal encapsulation according to the reduction of minimum bactericidal concentration (MBC) by 6-fold. The multifunctional liposomes exhibited a synergistically inhibitory effect on biofilm C. acnes colonization compared with the liposomes containing PK or those containing SME individually. The adhesive bacterial colony in the microplate was lessened by 62% after multifunctional liposome intervention. All liposomal formulations tested here demonstrated no cytotoxicity against the normal keratinocytes but inhibited C. acnes-stimulated cell hyperproliferation. The in vitro scratch assay indicated that the liposomal RA-but not free RA-restrained keratinocyte migration. The animal study showed that free RA combined with SME and multifunctional nanovesicles had a similar effect on diminishing C. acnes colonies in the skin. On the other hand, liposomes exhibited superior performance in recovering the impaired skin barrier function than the free control. We also found that RA-loaded nanovesicles had greater skin tolerability than free RA. Conclusion: The cationic liposomes containing dual PK and RA represented a potential treatment to arrest bacterial infection and associated inflammation in acne.


Subject(s)
Acne Vulgaris , Liposomes , Mice , Animals , Liposomes/pharmacology , Tretinoin/pharmacology , Endopeptidase K/pharmacology , Biofilms , Keratinocytes , Cell Proliferation , Anti-Bacterial Agents/pharmacology
6.
Pharmaceutics ; 15(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37242688

ABSTRACT

Linalool is an aromatic oil with analgesic, anti-inflammatory and anti-UVB-induced skin damage effects. The aim of this study was to develop a linalool-loaded microemulsion formulation for topical application. In order to quickly obtain an optimal drug-loaded formulation, statistical tools of the response surface methodology and a mixed experimental design with four independent variables of oil (X1), mixed surfactant (X2), cosurfactant (X3) and water (X4) were used to design a series of model formulations in order to analyze the effect of the composition on the characteristics and permeation capacity of linalool-loaded microemulsion formulations and to obtain an appropriate drug-loaded formulation. The results showed that the droplet size, viscosity and penetration capacity of linalool-loaded formulations were significantly affected by formulation component proportions. The skin deposition amount of the drug and flux of such formulations expressively increased about 6.1-fold and 6.5-fold, respectively, when compared to the control group (5% linalool dissolved in ethanol). After 3 months of storage, the physicochemical characteristics and drug level did not show a significant change. The linalool formulation-treated rat skin showed non-significant irritation compared to skin treatments in the distilled-water-treated group. The results showed that specific microemulsion applications might be considered as potential drug delivery carriers for essential oil topical application.

7.
Int Immunopharmacol ; 119: 110202, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37075671

ABSTRACT

Phytosterols have been reported to exert anti-inflammatory activity. This study aimed to investigate the capacity of campesterol, ß-sitosterol, and stigmasterol on the mitigation of psoriasiform inflammation. We also tried to establish structure-activity and structure-permeation relationships for these plant sterols. To support this study, we first approached the in silico data of the physicochemical properties and the molecular docking of phytosterols with stratum corneum (SC) lipids. The anti-inflammatory activity of the phytosterols was explored in the activated keratinocytes and macrophages. Using the activated keratinocyte model, a significant inhibition of IL-6 and CXCL8 overexpression by phytosterols was detected. A comparable inhibition level was found for the three phytosterols tested. The macrophage-based study showed that the anti-IL-6 and anti-CXCL8 activities of campesterol were greater than those of the other compounds, which indicated that a phytosterol structure without a double bond on C22 and with methyl moiety on C24 was more effective. The conditioned medium of phytosterol-treated macrophages decreased STAT3 phosphorylation in the keratinocytes, suggesting the inhibition of keratinocyte hyperproliferation. ß-sitosterol was the penetrant with the highest pig skin absorption (0.33 nmol/mg), followed by campesterol (0.21 nmol/mg) and stigmasterol (0.16 nmol/mg). The therapeutic index (TI) is a parameter measured by multiplying the cytokine/chemokine suppression percentage with skin absorption for anticipating the anti-inflammatory activity after topical delivery. ß-sitosterol is a potential candidate for treating psoriatic inflammation due to having the greatest TI value. In this study, ß-sitosterol attenuated epidermal hyperplasia and immune cell infiltration in the psoriasis-like mouse model. The psoriasiform epidermis thickness could be reduced from 92.4 to 63.8 µm by the topical use of ß-sitosterol, with a downregulation of IL-6, TNF-α, and CXCL1. The skin tolerance study manifested that the reference drug betamethasone but not ß-sitosterol could generate barrier dysfunction. ß-sitosterol possessed anti-inflammatory activity and facile skin transport, showing the potential for development as an anti-psoriatic agent.


Subject(s)
Phytosterols , Psoriasis , Mice , Animals , Swine , Sitosterols/pharmacology , Sitosterols/therapeutic use , Stigmasterol/pharmacology , Stigmasterol/therapeutic use , Molecular Docking Simulation , Phytosterols/therapeutic use , Psoriasis/drug therapy , Inflammation
8.
Sci Rep ; 13(1): 5511, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37016048

ABSTRACT

Monocytes are a major population of circulating immune cells that play a crucial role in producing pro-inflammatory cytokines in the body. The actions of monocytes are known to be influenced by the combinations and concentrations of certain fatty acids (FAs) in blood and dietary fats. However, systemic comparisons of the effects of FAs on cytokine secretion by monocytes have not be performed. In this study, we compared how six saturated FAs (SFAs), two monounsaturated FAs (MUFAs), and seven polyunsaturated FAs (PUFAs) modulate human THP-1 monocyte secretion of TNF, IL-1ß, and IL-6 in the absence or presence of lipopolysaccharide. SFAs generally stimulated resting THP-1 cells to secrete pro-inflammatory cytokines, with stearic acid being the most potent species. In contrast, MUFAs and PUFAs inhibited lipopolysaccharide-induced secretion of pro-inflammatory cytokines. Interestingly, the inhibitory potentials of MUFAs and PUFAs followed U-shaped (TNF and IL-1ß) or inverted U-shaped (IL-6) dose-response curves. Among the MUFAs and PUFAs that were analyzed, docosahexaenoic acid (C22:6 n-3) exhibited the largest number of double bonds and was found to be the most potent anti-inflammatory compound. Together, our findings reveal that the chemical compositions and concentrations of dietary FAs are key factors in the intricate regulation of monocyte-mediated inflammation.


Subject(s)
Cytokines , Monocytes , Humans , Cytokines/pharmacology , Lipopolysaccharides/pharmacology , Interleukin-6/pharmacology , Fatty Acids/pharmacology , Fatty Acids, Unsaturated/pharmacology , Dietary Fats/pharmacology
9.
Pharmaceutics ; 14(10)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36297545

ABSTRACT

This study investigates pH-sensitive hydrogels based on biocompatible, biodegradable polysaccharides and natural polymers such as chondroitin sulfate and alginate in combination with synthetic monomer such as acrylic acid, as controlled drug carriers. Investigations were conducted for chondroitin sulfate/alginate-graft-poly(acrylic acid) hydrogel in various mixing ratios of chondroitin sulfate, alginate and acrylic acid in the presence of ammonium persulfate and N',N'-Methylene bisacrylamide. Crosslinking and loading of drug were confirmed by Fourier transform infrared spectroscopy. Thermal stability of both polymers was enhanced after crosslinking as indicated by thermogravimetric analysis and differential scanning calorimeter thermogram of developed hydrogel. Similarly, surface morphology was evaluated by scanning electron microscopy, whereas crystallinity of the polymers and developed hydrogel was investigated by powder X-ray diffraction. Furthermore, swelling and drug-release studies were investigated in acidic and basic medium of pH 1.2 and 7.4 at 37 °C, respectively. Maximum swelling and drug release were detected at pH 7.4 as compared to pH 1.2. Increased incorporation of hydrogel contents led to an increase in porosity, drug loading, and gel fraction while a reduction in sol fraction was seen. The polymer volume fraction was found to be low at pH 7.4 compared to pH 1.2, indicating a prominent and greater swelling of the prepared hydrogels at pH 7.4. Likewise, a biodegradation study revealed a slow degradation rate of the developed hydrogel. Hence, we can conclude from the results that a fabricated system of hydrogel could be used as a suitable carrier for the controlled delivery of ketorolac tromethamine.

10.
Front Neurol ; 12: 658582, 2021.
Article in English | MEDLINE | ID: mdl-34539539

ABSTRACT

Objective: Stroke in young adults is uncommon, and the etiologies and risk factors of stroke in young adults differ from those in older populations. Smoker's paradox is an unexpected favorable outcome, and age difference is used to explain the association between smoking and the favorable functional outcome. This study aimed to investigate the existence of this phenomenon in young stroke patients. Methods: We analyzed a total of 9,087 young stroke cases registered in the nationwide stroke registry system of Taiwan between 2006 and 2016. Smoking criteria included having a current history of smoking more than one cigarette per day for more than 6 months. After matching for sex and age, a Cox model was used to compare mortality and function outcomes between smokers and non-smokers. Results: Compared with the non-smoker group, smoking was associated with older age, higher comorbidities, and higher alcohol consumption. Patients who report smoking with National Institutes of Health Stroke Scale scores of 11-15 had a worse functional outcome (adjusted odds ratio, 0.81; 95% confidence interval, 0.76 - 0.87). Conclusion: Smokers had a higher risk of unfavorable functional outcomes at 3 months after stroke, and therefore, we continue to strongly advocate the importance of smoking cessation.

11.
J Control Release ; 333: 487-499, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33845057

ABSTRACT

Psoriasis is a chronic autoimmune skin disorder that involves keratinocyte hyperproliferation and inflammatory cell recruitment. A strategy to mitigate psoriatic lesions is to induce keratinocyte apoptosis for proliferation suppression. Herein we designed a nanoformulation capable of treating psoriasis via hyperthermia-induced apoptosis in response to near-infrared (NIR) irradiation. To this end, gold nanorods (GNRs) and isatin, which is an anti-inflammatory agent for synergizing antipsoriatic activity, were loaded into a poly (lactic-co-glycolic acid) (PLGA) matrix to form the nanocomplexes. The physicochemical and photothermal properties of the nanocomplexes were determined in terms of size, surface charge, NIR-absorbing feature, isatin release, keratinocyte uptake, and cytotoxicity. The nanocomplexes showed a spherical shape with an average size of about 180 nm. The GNR-loaded nanoparticles can efficiently convert NIR light at 0.42 W/cm2 into heat with an increased temperature of 10 °C. When combined with NIR exposure, the nanocomplexes were internalized into keratinocyte cytoplasm with an inhibition of keratinocyte viability to about 60%. Live/dead cell assay and flow cytometry confirmed that the nanocomplexes could serve as NIR-absorbers to specifically elicit keratinocyte apoptosis through caspase and poly ADP-ribose polymerase (PARP) pathways. The in vivo psoriasiform murine model indicated that the combined nanocomplexes and NIR inhibited epidermal hyperplasia and neutrophil infiltration. The overexpressed cytokines in the lesion could be recovered to normal baseline level after the photothermal management. The subcutaneous nanocomplexes remained in the skin for at least 5 days. The nanocomposites produced a negligible toxicity in the skin or liver of healthy mice. The photothermal nanosystems, as designed in this study, shed new light on the therapeutic approach against psoriasis.


Subject(s)
Hyperthermia, Induced , Isatin , Nanotubes , Psoriasis , Animals , Cell Line, Tumor , Gold , Infrared Rays , Mice , Phototherapy , Psoriasis/therapy
12.
Front Neurol ; 12: 793471, 2021.
Article in English | MEDLINE | ID: mdl-35113980

ABSTRACT

Objective: Lower serum low-density lipoprotein cholesterol (LDL-C) levels are associated with increased intracerebral hemorrhage (ICH) risk. However, reverse causality and residual confounding has not attracted public attention. Therefore, we assessed whether people with LDL-C have increased risk of mortality adjusting for potential confounders using two large Taiwan cohorts. Methods: The Mei-Jhao (MJ) cohort has 414,372 adults participating in a medical screening program with 378 ICH deaths within 15 years of follow-up (1994-2008). Cox proportional hazards regressions estimated hazard death ratios according to LDL-C levels. We identified 4,606 ICH patients from the Taiwan Stroke Registry (TSR) and analyzed the impact of LDL-C on 3-month mortality. Results: Low cholesterol (LDL-C <100 mg/dL), found in 1/4 of the MJ cohort, was highly prevalent (36%) among young adults (age 20-39). There was a graded relationship between cholesterol and mortality for ICH [Hazard ratio, 1.56; 95% confidence interval (CI), 1.13-2.16]. Compared with patients with an LDL-C of 110-129 mg/dL in TSR, the risk for mortality was 1.84 (95% CI, 1.28-2.63) with an LDL-C of <100 mg/dL. Conclusion: Lower serum LDL-C level independently predicts higher mortality after acute ICH. While its causative role may vary, low cholesterol may pose potential harms in Taiwan.

13.
Pharmaceutics ; 12(10)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036448

ABSTRACT

Combined chemotherapy is an effective and safe treatment for cancers. Co-administration of cisplatin and gemcitabine produces a synergistic effect for bladder cancer treatment, so viscous microemulsions were developed for co-delivery of cisplatin and gemcitabine to extend the retention time and improve the permeability of chemotherapeutic drugs into the urothelium by intravesical administration. Results showed that the deposition amounts of cisplatin and gemcitabine significantly increased in in vitro and in vivo study. The penetration depth in bladder tissue samples increased from 60 to 120 µm. The dual-loaded formulation also showed thermodynamic and chemical stability, demonstrating that these gel-based microemulsions are promising drug delivery carriers for chemotherapy agents by intravesical administration.

14.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105632

ABSTRACT

Intravesical administration of chemotherapeutic agents can enhance drug accumulation in tumors and reduce systemic side effects. Nanocarriers were developed for intravesical administration and exploit the permeation enhancement effect. In vitro permeation evaluation, the drug transdermal amount and accumulation amounts in the tissue of gemcitabine-loaded nanocarriers through biological membrane significantly increased about 14.8~33.0-fold and 1.5~14.1-fold respectively, when compared to a control group of 1% gemcitabine saline solution. In in vivo intravesical administration, the drug accumulation amount in bladder tissue of nanocarrier of 75.2 ± 5.4 µg was revealed as being comparably higher than that of the control group of 44.8 ± 6.4 µg. In confocal laser scanning microscopy imagery, the penetration depth of fluorescent dyes-rhodamine was increased from 80 µm up to 120 µm when a nanocarrier was used. This result implies that the nanocarrier is a promising drug delivery agent for intravesical administration.

16.
Int J Med Sci ; 16(1): 60-67, 2019.
Article in English | MEDLINE | ID: mdl-30662329

ABSTRACT

The dysfunction of voltage-gated ion channels contributes to the pathology of ischemic stroke. In this study, we developed rat models of transient ischemic attack (TIA) and reversible ischemic neurological deficit (RIND) that was induced via the injection of artificial embolic particles during full consciousness, that allow us to monitor the neurologic deficit and positron emission tomography (PET) scans in real-time. We then evaluated the infarction volume of brain tissue was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and gene expressions were evaluated by quantitative real-time PCR (qPCR). We found that rats with TIA or RIND exhibited neurological deficits as determined by negative TTC and PET findings. However, the expression of voltage-gated sodium channels in the hippocampus was significantly up-regulated in the qPCR array study. Furthermore, an altered expression of sodium channel ß-subunits and potassium channels, were observed in RIND compared to TIA groups. In conclusion, to our knowledge, this is the first report of the successful evaluation of voltage-gated ion channel gene expression in TIA and RIND animal models. This model will aid future studies in investigating pathophysiological mechanisms, and in developing new therapeutic compounds for the treatment of TIA and RIND.


Subject(s)
Disease Models, Animal , Gene Expression , Potassium Channels, Voltage-Gated/genetics , Stroke/genetics , Voltage-Gated Sodium Channel beta Subunits/genetics , Animals , Brain/blood supply , Brain/metabolism , Brain/pathology , Embolism , Hippocampus/physiopathology , Ischemic Attack, Transient/genetics , Ischemic Attack, Transient/metabolism , Male , Potassium Channels, Voltage-Gated/metabolism , Rats , Rats, Wistar , Stroke/metabolism , Up-Regulation , Voltage-Gated Sodium Channel beta Subunits/metabolism
17.
Colloids Surf B Biointerfaces ; 161: 121-128, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29055864

ABSTRACT

The aim of the present study was to design a microemulsion for catechin topical application. A mixture experimental design with five independent variables (X1: oil, X2: surfactant, X3: catechin, X4: cosurfactant and X5: water) was developed, and the response surface methodology was used to study the effect of formulation components on physiochemical characteristics and penetration capacity of a catechin-loaded microemulsion, and to obtain an optimal microemulsion formulation. The results showed that the drug-loaded microemulsion formation and characteristics were related to many parameters of the components. The transdermal amounts in receiver cells and skin deposition amount remarkably increased about 4.1-111.6-fold and 0.6-7.6-fold respectively. The lag time was significantly shortened from 10h to 1.0-6.7h. The optimal formulation with 20% surfactant, 30% cosurfactant and 2.6% Catechin was subjected to stability and irritation tests. The results showed that the physicochemical characteristics and catechin level of the drug-loaded microemulsion did not show significant degradation after 3 months of storage at 25°C.The catechin-loaded microemulsion did not cause significant irritation compared to the water-treated group.


Subject(s)
Catechin/administration & dosage , Emulsions/chemistry , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Animals , Catechin/chemistry , Catechin/pharmacokinetics , Chemical Phenomena , Drug Design , Drug Evaluation, Preclinical , Drug Stability , Hydrophobic and Hydrophilic Interactions , Rats, Sprague-Dawley , Skin/cytology , Surface-Active Agents/chemistry , Water/chemistry
18.
J Biomed Nanotechnol ; 13(2): 192-03, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29377649

ABSTRACT

Solid lipid nanoparticles (SLNs) are suitable candidates for the delivery of various anti-cancer drugs. However, currently insufficient tumor-permeability and non-specific uptake by the reticuloendothelial system limits the application of SLNs. Here, we developed novel pH-sensitive cationic polyoxyethylene (PEGylated) SLNs (PEG-SLNs+) that could accumulate long-term at various tumor sites to enhance the therapeutic efficiency of camptothecin (CPT). These CPT-loaded PEG-SLNs+ (CPT-PEG-SLNs+) were spherical nanoparticles, with small size (∼52.3±1.7 nm), positive charge (∼34.3±3.5 mV) and high entrapment efficiency (∼99.4±1.7%). Drug release profile indicated the overall released amount of CPT from CPT-PEG-SLNs+ at pH 5.5 was 20.2% more than at pH 7.4, suggesting CPT-PEG-SLNs+ were a pH-sensitive SLNs. This PEG-SLNs+ could be efficiently uptaken into cells to inhibit the proliferation of CL1-5 cells (IC50 = 0.37 ±0.21 ug/ml) or HCC36 cells (IC50 = 0.16±0.43 ug/ml). In living animal, our PEG-SLNs+ could accumulate long-term (for more than 120 hours) in various types of tumor, including human lung carcinoma (NCI-H358, CRL5802, CL1-5), human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HCC36), and CPT-PEG-SLNs+ could efficiently enhance the therapeutic efficiency of CPT to suppress the growth of the HCC36 or CL1-5 tumors. Therefore, Successful development of these pH-sensitive PEGylated cationic SLNs may provide a selective and efficient drug delivery system for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Cell Proliferation/drug effects , Lipids/pharmacology , Nanoparticles/chemistry , Polyethylene Glycols/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Camptothecin/chemistry , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Cell Line, Tumor , Drug Delivery Systems , Humans , Lipids/chemistry , Mice , Mice, Nude , Particle Size , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays
19.
Colloids Surf B Biointerfaces ; 148: 650-656, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27697739

ABSTRACT

The aim of this study was to develop and assess the potential of nanostructured emulsion carriers for resveratrol topical application. Different compositions of resveratrol-loaded nanostructured emulsions were prepared using different types and amounts of surfactants and oily phases (isopropyl myristate and caproyl 90). The produced nanostructured emulsions were within the nanosized range 23.4-422.2nm with low viscosity range 2.15-17.53cps. The transdermal amount and deposition amount in the skin after 24 applications of resveratrol-loaded nanostructured emulsion were significantly increased about 896.2-fold and 10.2-fold respectively, when compared to the drug-saturated solution-treated group. Nanostructured emulsion containing IPM and low amounts of mixed surfactant of Tween80/Span 20 showed highest permeation capacity. In vivo study showed that the plasma concentration of resveratrol could be maintained at high levels for a long time after topical application of drug-loaded nanostructured emulsion. The histological examination demonstrated that the free drug- and drug-loaded nanostructured emulsion demonstrated considerably less irritation than the standard irritation group (0.8% paraformaldehyde-treated). The residual contents of resveratrol in the tested formulations after 3 months of storage at 25°C and 40°C were more than 99.97±3.90%. The results of present work confirm the high potential of nanostructured emulsion as carriers for drug topical application.


Subject(s)
Drug Carriers/chemistry , Nanostructures/chemistry , Skin/metabolism , Stilbenes/pharmacokinetics , Administration, Cutaneous , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Biological Availability , Drug Stability , Emulsions/chemistry , Particle Size , Rats, Sprague-Dawley , Resveratrol , Skin Absorption , Skin Tests , Stilbenes/administration & dosage , Stilbenes/chemistry , Thermodynamics , Viscosity
20.
Int J Med Sci ; 13(5): 347-56, 2016.
Article in English | MEDLINE | ID: mdl-27226775

ABSTRACT

Animal and clinical studies have revealed that hyperglycemia during ischemic stroke increases the stroke's severity and the infarct size in clinical and animal studies. However, no conclusive evidence demonstrates that acute hyperglycemia worsens post-stroke outcomes and increases infarct size in lacunar stroke. In this study, we developed a rat model of lacunar stroke that was induced via the injection of artificial embolic particles during full consciousness. We then used this model to compare the acute influence of hyperglycemia in lacunar stroke and diffuse infarction, by evaluating neurologic behavior and the rate, size, and location of the infarction. The time course of the neurologic deficits was clearly recorded from immediately after induction to 24 h post-stroke in both types of stroke. We found that acute hyperglycemia aggravated the neurologic deficit in diffuse infarction at 24 h after stroke, and also aggravated the cerebral infarct. Furthermore, the infarct volumes of the basal ganglion, thalamus, hippocampus, and cerebellum but not the cortex were positively correlated with serum glucose levels. In contrast, acute hyperglycemia reduced the infarct volume and neurologic symptoms in lacunar stroke within 4 min after stroke induction, and this effect persisted for up to 24 h post-stroke. In conclusion, acute hyperglycemia aggravated the neurologic outcomes in diffuse infarction, although it significantly reduced the size of the cerebral infarct and improved the neurologic deficits in lacunar stroke.


Subject(s)
Embolism/complications , Hyperglycemia/complications , Particulate Matter/adverse effects , Stroke, Lacunar/pathology , Acute Disease , Animals , Brain/pathology , Brain/physiopathology , Brain Ischemia/etiology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cerebral Infarction/etiology , Cerebral Infarction/pathology , Cerebral Infarction/physiopathology , Disease Models, Animal , Hyperglycemia/physiopathology , Male , Rats , Rats, Wistar , Stroke, Lacunar/etiology , Stroke, Lacunar/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL