Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38991619

ABSTRACT

Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome, but the complete array of signals that control this inflammasome have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8. These hydrophobic modifications destabilize the repressive CARD8 N-terminal fragment and accelerate its proteasome-mediated degradation, thereby releasing the inflammatory CARD8 C-terminal fragment from autoinhibition. Consistently, we also found that unrelated (non-RTA) hydrophobic electrophiles as well as genetic mutation of the CARD8 cysteine residues to isoleucines similarly potentiate inflammasome activation. Overall, our results not only provide further evidence that protein folding stress is a key CARD8 inflammasome-activating signal, but also indicate that the N-terminal cysteines can play key roles in tuning the response to this stress.

2.
Cell Chem Biol ; 31(5): 955-961.e4, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38215746

ABSTRACT

NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1's selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged AlphaFold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.


Subject(s)
Adaptor Proteins, Signal Transducing , Disulfides , NLR Proteins , Oxidation-Reduction , Thioredoxins , Humans , Disulfides/chemistry , Disulfides/metabolism , Thioredoxins/metabolism , Thioredoxins/chemistry , NLR Proteins/metabolism , NLR Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , HEK293 Cells , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/chemistry , Inflammasomes/metabolism , Cysteine/metabolism , Cysteine/chemistry
3.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808697

ABSTRACT

NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1's selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged Alphafold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.

4.
Sci Immunol ; 7(77): eabm7200, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36332009

ABSTRACT

The danger signals that activate the NLRP1 inflammasome have not been established. Here, we report that the oxidized, but not the reduced, form of thioredoxin-1 (TRX1) binds to NLRP1. We found that oxidized TRX1 associates with the NACHT-LRR region of NLRP1 in an ATP-dependent process, forming a stable complex that restrains inflammasome activation. Consistent with these findings, patient-derived and ATPase-inactivating mutations in the NACHT-LRR region that cause hyperactive inflammasome formation interfere with TRX1 binding. Overall, this work strongly suggests that reductive stress, the cellular perturbation that will eliminate oxidized TRX1 and abrogate the TRX1-NLRP1 interaction, is a danger signal that activates the NLRP1 inflammasome.


Subject(s)
Inflammasomes , Thioredoxins , Humans , Inflammasomes/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , Adaptor Proteins, Signal Transducing , NLR Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL