Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(7)2023 07 23.
Article in English | MEDLINE | ID: mdl-37510407

ABSTRACT

Age-related mitochondrial markers may facilitate the prognosis of artificial reproductive technology outcomes. In this report, we present our study concerning the ratio of cf-mtDNA/cf-nDNA, namely the amount of cell-free mitochondrial DNA relative to cell-free nuclear DNA, in the follicular fluid (FF) of women undergoing IVF, aiming to generate a molecular fingerprint of oocyte quality. The values of this ratio were measured and compared among three groups of women (101 in total): (A) 31 women with polycystic ovary syndrome (PCOS), (B) 34 women younger than 36 years, and (C) 36 women older than 35 years of age. Real-time quantitative PCR (qPCR) was performed to quantify the ratio by using nuclear- and mitochondrial-specific primers and analyzed for potential correlation with age and pregnancy rate. Our analysis showed that the level of FF-cf-mtDNA was lower in the group of advanced-age women than in the groups of PCOS and non-PCOS women. Moreover, a significant positive correlation between FF-cf-mtDNA and the number of mature (MII) oocytes was observed. Collectively, the data show that the relative ratio of cf- mtDNA to cf-nDNA content in human FF can be an effective predictor for assessing the corresponding oocyte's age-related performance in IVF.


Subject(s)
Follicular Fluid , Polycystic Ovary Syndrome , Pregnancy , Humans , Female , Follicular Fluid/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Oocytes/metabolism , Mitochondria , Polycystic Ovary Syndrome/genetics , Fertilization in Vitro
2.
J Leukoc Biol ; 112(4): 641-657, 2022 10.
Article in English | MEDLINE | ID: mdl-35258130

ABSTRACT

Thymocyte differentiation and lineage commitment is regulated by an extensive network of transcription factors and signaling molecules among which Erk plays a central role. However, Erk effectors as well as the molecular mechanisms underlying this network are not well understood. Erf is a ubiquitously expressed transcriptional repressor regulated by Erk-dependent phosphorylation. Here, we investigated the role of Erf in T cell maturation and lineage commitment, using a double-fluorescent Erf-floxed mouse to produce thymus-specific Erf knockouts. We observed significant accumulation of thymocytes in the CD4/CD8 DP stage, followed by a significant reduction in CD4SP cells, a trend for lower CD8SP cell frequency, and an elevated percentage of γδ expressing thymocytes in Erf-deficient mice. Also, an elevated number of CD69+ TCRß+ cells indicates that thymocytes undergoing positive selection accumulate at this stage. The expression of transcription factors Gata3, ThPOK, and Socs1 that promote CD4+ cell commitment was significantly decreased in Erf-deficient mice. These findings suggest that Erf is involved in T cell maturation, acting as a positive regulator during CD4 and eventually CD8 lineage commitment, while negatively regulates the production of γδ T cells. In addition, Erf-deficient mice displayed decreased percentages of CD4+ and CD8+ splenocytes and elevated levels of IL-4 indicating that Erf may have an additional role in the homeostasis, differentiation, and immunologic response of helper and cytotoxic T cells in the periphery. Overall, our results show, for the first time, Erf's involvement in T cell biology suggesting that Erf acts as a potential regulator during thymocyte maturation and thymocyte lineage commitment, in γδ T cell generation, as well as in Th cell differentiation.


Subject(s)
Interleukin-4 , Thymocytes , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Lineage , GATA3 Transcription Factor/metabolism , Interleukin-4/metabolism , Mice , Repressor Proteins , Thymus Gland
SELECTION OF CITATIONS
SEARCH DETAIL