Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 202: 114412, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013491

ABSTRACT

Imatinib is a chemotherapeutic agent known to cause severe side effects when administrated systemically. Encapsulating imatinib in co-polymer poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) offers a targeted drug delivery. In this work, PLGA 50:50 and PLGA 75:25 NPs encapsulated imatinib using the electrohydrodynamic atomisation technique. All particles generated were spherical with a smooth surface with a size distribution of 455±115 nm (PLGA 50:50) and 363±147 nm (PLGA 75:25). Encapsulation of imatinib was shown to be higher than 75 % and was shown to increase the zeta potential of the loaded NPs. The release of imatinib showed an initial burst in the first 12 h, followed by different sustained releases with up to 70 %. Both types of imatinib-loaded NPs' effect on cell viability and their cellular uptake were also studied on A549 cells, and the antiproliferative effect was comparable to that of cells treated with free drugs. Finally, Rhodamine-B-loaded NP-treated cells demonstrated the cellular uptake of NPs.


Subject(s)
Antineoplastic Agents , Cell Survival , Drug Carriers , Imatinib Mesylate , Nanoparticles , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Imatinib Mesylate/administration & dosage , Imatinib Mesylate/pharmacology , Imatinib Mesylate/pharmacokinetics , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , A549 Cells , Cell Survival/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Lactic Acid/chemistry , Drug Liberation , Polyglycolic Acid/chemistry , Polymers/chemistry , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL