Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Neurobiol Aging ; 141: 55-65, 2024 May 28.
Article En | MEDLINE | ID: mdl-38823204

Studies have confirmed that anxiety, especially worry and rumination, are associated with increased risk for cognitive decline, including Alzheimer's disease and related dementias (ADRD). Hippocampal atrophy is a hallmark of ADRD. We investigated the association between hippocampus and its subfield volumes and late-life global anxiety, worry, and rumination, and emotion regulation strategies. We recruited 110 participants with varying worry severity who underwent magnetic resonance imaging and clinical interviews. We conducted cross-sectional regression analysis between each subfield and anxiety, worry, rumination, reappraisal, and suppression while adjusting for age, sex, race, education, cumulative illness burden, stress, neuroticism, and intracranial volume. We imputed missing data and corrected for multiple comparisons across regions. Greater worry was associated with smaller subiculum volume, whereas greater use of reappraisal was associated with larger subiculum and CA1 volume. Greater worry may be detrimental to the hippocampus and to subfields involved in early ADRD pathology. Use of reappraisal appears protective of hippocampal structure. Worry and reappraisal may be modifiable targets for ADRD prevention.

2.
Mol Neurodegener ; 19(1): 40, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750570

Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aß]40, Aß42, Aß42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.


Alzheimer Disease , Biological Specimen Banks , Biomarkers , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Biomarkers/blood , Biological Specimen Banks/standards , Research Design/standards , Amyloid beta-Peptides/blood , Specimen Handling/standards , Specimen Handling/methods , tau Proteins/blood
3.
Alzheimers Dement (Amst) ; 16(2): e12582, 2024.
Article En | MEDLINE | ID: mdl-38623384

INTRODUCTION: People with Down syndrome (DS) have a 75% to 90% lifetime risk of Alzheimer's disease (AD). AD pathology begins a decade or more prior to onset of clinical AD dementia in people with DS. It is not clear if plasma biomarkers of AD pathology are correlated with early cognitive and functional impairments in DS, and if these biomarkers could be used to track the early stages of AD in DS or to inform inclusion criteria for clinical AD treatment trials. METHODS: This large cross-sectional cohort study investigated the associations between plasma biomarkers of amyloid beta (Aß)42/40, total tau, and neurofilament light chain (NfL) and cognitive (episodic memory, visual-motor integration, and visuospatial abilities) and functional (adaptive behavior) impairments in 260 adults with DS without dementia (aged 25-81 years). RESULTS: In general linear models lower plasma Aß42/40 was related to lower visuospatial ability, higher total tau was related to lower episodic memory, and higher NfL was related to lower visuospatial ability and lower episodic memory. DISCUSSION: Plasma biomarkers may have utility in tracking AD pathology associated with early stages of cognitive decline in adults with DS, although associations were modest. Highlights: Plasma Alzheimer's disease (AD) biomarkers correlate with cognition prior to dementia in Down syndrome.Lower plasma amyloid beta 42/40 was related to lower visuospatial abilities.Higher plasma total tau and neurofilament light chain were associated with lower cognitive performance.Plasma biomarkers show potential for tracking early stages of AD symptomology.

4.
Alzheimers Dement ; 20(1): 388-398, 2024 Jan.
Article En | MEDLINE | ID: mdl-37641577

INTRODUCTION: Almost all individuals with Down syndrome (DS) will develop neuropathological features of Alzheimer's disease (AD). Understanding AD biomarker trajectories is necessary for DS-specific clinical interventions and interpretation of drug-related changes in the disease trajectory. METHODS: A total of 177 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) underwent positron emission tomography (PET) and MR imaging. Amyloid-beta (Aß) trajectories were modeled to provide individual-level estimates of Aß-positive (A+) chronicity, which were compared against longitudinal tau change. RESULTS: Elevated tau was observed in all NFT regions following A+ and longitudinal tau increased with respect to A+ chronicity. Tau increases in NFT regions I-III was observed 0-2.5 years following A+. Nearly all A+ individuals had tau increases in the medial temporal lobe. DISCUSSION: These findings highlight the rapid accumulation of amyloid and early onset of tau relative to amyloid in DS and provide a strategy for temporally characterizing AD neuropathology progression that is specific to the DS population and independent of chronological age. HIGHLIGHTS: Longitudinal amyloid trajectories reveal rapid Aß accumulation in Down syndrome NFT stage tau was strongly associated with A+ chronicity Early longitudinal tau increases were observed 2.5-5 years after reaching A.


Alzheimer Disease , Down Syndrome , Adult , Humans , Down Syndrome/complications , tau Proteins , Alzheimer Disease/pathology , Amyloid beta-Peptides , Amyloid , Positron-Emission Tomography/methods , Biomarkers
5.
Am J Geriatr Psychiatry ; 32(1): 83-97, 2024 01.
Article En | MEDLINE | ID: mdl-37718134

OBJECTIVE: We investigated the relationship between anxiety phenotypes (global anxiety, worry, and rumination) and white matter hyperintensities (WMH), with special consideration for the roles of age and executive function (EF). Our hypotheses were 1) anxiety phenotypes would be associated with WMH and 2) EF would moderate this relationship. DESIGN: Cross-sectional. SETTING: Participants were recruited from the local community (Pittsburgh, PA). PARTICIPANTS: We recruited 110 older adults (age ≥ 50) with varying worry severity and clinical comorbidity. INTERVENTIONS: Not applicable. MEASUREMENTS: Demographics (age, sex, race, education), clinical measures (cumulative illness burden, global anxiety, worry, and rumination), EF, and WMH quantified with magnetic resonance imaging. RESULTS: Lower global anxiety and worry severity were significantly correlated with higher WMH volume, though the global anxiety relationship was not significant after controlling for age. Rumination as not associated with WMH burden. EF was not correlated with either global anxiety, worry, rumination, or WMH. However, in those with advanced age and/or greater WMH burden, there was an association between worry and EF as well as EF and WMH. CONCLUSION: Longitudinal studies are needed in order to clarify the complex interactions between anxiety phenotypes, WMH, and EF.


White Matter , Humans , Aged , White Matter/diagnostic imaging , White Matter/pathology , Cross-Sectional Studies , Executive Function , Magnetic Resonance Imaging , Anxiety
6.
medRxiv ; 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38076904

Importance: By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors. Objective: To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS. Design: Cross sectional analysis of neuroimaging, plasma, and clinical data. Setting: Participants were enrolled in Alzheimer's Biomarker Consortium - Down Syndrome (ABC-DS), a multisite study of AD in adults with DS. Participants: One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker concentrations of amyloid beta (Aß42/Aß40), phosphorylated tau (p-tau217), astrocytosis (glial fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were measured with ultrasensitive immunoassays. Main Outcomes and Measures: We examined the bivariate relationships of WMH, Aß42/Aß40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A series of mediation and path analyses examined causal pathways linking WMH and AD pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. Results: There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 concentration, which was associated with NfL concentration in the entire sample. Among cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 and NfL concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. Conclusions and Relevance: The findings suggest that among individuals with DS, CVD promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and its interface with neuroinflammation as a core pathological feature of AD in adults with DS.

7.
JAMA Netw Open ; 6(11): e2345175, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-38010651

Importance: Neuropsychiatric symptoms are commonly encountered and are highly debilitating in patients with Alzheimer disease. Understanding their underpinnings has implications for identifying biomarkers and treatment for these symptoms. Objective: To evaluate whether glial markers are associated with neuropsychiatric symptoms in individuals across the Alzheimer disease continuum. Design, Setting, and Participants: This cross-sectional study was conducted from January to June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University, Canada. Recruitment was based on referrals of individuals from the community or from outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance imaging, being currently enrolled in other studies, and having inadequately treated systemic conditions. Main Outcomes and Measures: All individuals underwent assessment for neuropsychiatric symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation ([11C]PBR28 PET), amyloid-ß ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET). Results: Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-ß PET positivity was present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals (79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal, and parietal cortices (ß = 7.37; 95% CI, 1.34-13.41; P = .01). A leave-one-out approach revealed that irritability was the NPI-Q domain most closely associated with the presence of brain microglial activation (ß = 6.86; 95% CI, 1.77-11.95; P = .008). Furthermore, we found that microglia-associated irritability was associated with study partner burden measured by NPI-Q distress score (ß = 5.72; 95% CI, 0.33-11.10; P = .03). Conclusions and Relevance: In this cross-sectional study of 109 individuals across the AD continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-ß- and microglia-targeted therapies could have an impact on relieving these symptoms.


Alzheimer Disease , Male , Humans , Female , Aged , Alzheimer Disease/pathology , Microglia/pathology , tau Proteins , Cross-Sectional Studies , Amyloid beta-Peptides , Biomarkers
8.
Nat Aging ; 3(10): 1210-1218, 2023 10.
Article En | MEDLINE | ID: mdl-37749258

The mechanisms by which the apolipoprotein E ε4 (APOEε4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOEε4 carriership and amyloid-ß (Aß) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for Aß ([18F]AZD4694) and tau ([18F]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOEε4 carriership potentiates Aß effects on longitudinal tau accumulation over 2 years. The APOEε4-potentiated Aß effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217+) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOEε4 allele plays a key role in Aß downstream effects on the aggregation of phosphorylated tau in the living human brain.


Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Heterozygote , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins/genetics , Apolipoprotein E4/genetics , Alleles
9.
Med Image Anal ; 89: 102926, 2023 10.
Article En | MEDLINE | ID: mdl-37595405

Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets has brought benefits such as higher statistical power, reliability, and robustness to the studies. Despite these promises from growth in sample size, substantial technical variability stemming from differences in scanner specifications exists in the aggregated data and could inadvertently bias any downstream analyses on it. Such a challenge calls for data normalization and/or harmonization frameworks, in addition to comprehensive criteria to estimate the scanner-related variability and evaluate the harmonization frameworks. In this study, we propose MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a supervised multi-scanner harmonization method that is naturally extendable to more than two scanners. We also designed a set of criteria to investigate the scanner-related technical variability and evaluate the harmonization techniques. As an essential requirement of our criteria, we introduced a multi-scanner matched dataset of 3T T1 images across four scanners, which, to the best of our knowledge is one of the few datasets of this kind. We also investigated our evaluations using two popular segmentation frameworks: FSL and segmentation in statistical parametric mapping (SPM). Lastly, we compared MISPEL to popular methods of normalization and harmonization, namely White Stripe, RAVEL, and CALAMITI. MISPEL outperformed these methods and is promising for many other neuroimaging modalities.


Deep Learning , Humans , Reproducibility of Results , Neuroimaging , Pancreas , Sample Size
10.
Alzheimers Dement ; 19(10): 4463-4474, 2023 10.
Article En | MEDLINE | ID: mdl-37534889

INTRODUCTION: Phosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-ß (Aß) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify Aß and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODS: We assessed 138 CU and 87 CI with available plasma p-tau231, 217+ , and 181, Aß42/40, GFAP and Aß- and tau-PET. RESULTS: In CU, only plasma p-tau231 and p-tau217+ significantly improved the performance of the demographics in detecting Aß-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217+ and GFAP significantly contributed to demographics to identify both Aß-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSION: Our results support plasma p-tau231 and p-tau217+ as state markers of early Aß deposition, but in later disease stages they inform on tau tangle accumulation. HIGHLIGHTS: It is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex). Plasma p-tau231 and p-tau217+ contribute to demographic information to identify brain Aß pathology in preclinical AD. In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217+ and GFAP inform on both Aß deposition and tau pathology.


Alzheimer Disease , Amyloid beta-Peptides , Humans , Plasma , Biomarkers , tau Proteins , Positron-Emission Tomography
11.
J Alzheimers Dis ; 95(1): 213-225, 2023.
Article En | MEDLINE | ID: mdl-37482997

BACKGROUND: Trisomy 21 causes Down syndrome (DS) and is a recognized cause of early-onset Alzheimer's disease (AD). OBJECTIVE: The current study sought to determine if premorbid intellectual disability level (ID) was associated with variability in age-trajectories of AD biomarkers and cognitive impairments. General linear mixed models compared the age-trajectory of the AD biomarkers PET Aß and tau and cognitive decline across premorbid ID levels (mild, moderate, and severe/profound), in models controlling trisomy type, APOE status, biological sex, and site. METHODS: Analyses involved adults with DS from the Alzheimer's Biomarkers Consortium-Down Syndrome. Participants completed measures of memory, mental status, and visuospatial ability. Premorbid ID level was based on IQ or mental age scores prior to dementia concerns. PET was acquired using [11C] PiB for Aß, and [18F] AV-1451 for tau. RESULTS: Cognitive data was available for 361 participants with a mean age of 45.22 (SD = 9.92) and PET biomarker data was available for 154 participants. There was not a significant effect of premorbid ID level by age on cognitive outcomes. There was not a significant effect of premorbid ID by age on PET Aß or on tau PET. There was not a significant difference in age at time of study visit of those with mild cognitive impairment-DS or dementia by premorbid ID level. CONCLUSION: Findings provide robust evidence of a similar time course in AD trajectory across premorbid ID levels, laying the groundwork for the inclusion of individuals with DS with a variety of IQ levels in clinical AD trials.


Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Intellectual Disability , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Down Syndrome/complications , Down Syndrome/diagnostic imaging , Down Syndrome/psychology , Intellectual Disability/complications , Intellectual Disability/diagnostic imaging , Intellectual Disability/psychology , Cognitive Dysfunction/psychology , Biomarkers , Amyloid beta-Peptides , tau Proteins , Positron-Emission Tomography
12.
Neuroimage Clin ; 39: 103472, 2023.
Article En | MEDLINE | ID: mdl-37506457

Studying small effects or subtle neuroanatomical variation requires large-scale sample size data. As a result, combining neuroimaging data from multiple datasets is necessary. Variation in acquisition protocols, magnetic field strength, scanner build, and many other non-biologically related factors can introduce undesirable bias into studies. Hence, harmonization is required to remove the bias-inducing factors from the data. ComBat is one of the most common methods applied to features from structural images. ComBat models the data using a hierarchical Bayesian model and uses the empirical Bayes approach to infer the distribution of the unknown factors. The empirical Bayes harmonization method is computationally efficient and provides valid point estimates. However, it tends to underestimate uncertainty. This paper investigates a new approach, fully Bayesian ComBat, where Monte Carlo sampling is used for statistical inference. When comparing fully Bayesian and empirical Bayesian ComBat, we found Empirical Bayesian ComBat more effectively removed scanner strength information and was much more computationally efficient. Conversely, fully Bayesian ComBat better preserved biological disease and age-related information while performing more accurate harmonization on traveling subjects. The fully Bayesian approach generates a rich posterior distribution, which is useful for generating simulated imaging features for improving classifier performance in a limited data setting. We show the generative capacity of our model for augmenting and improving the detection of patients with Alzheimer's disease. Posterior distributions for harmonized imaging measures can also be used for brain-wide uncertainty comparison and more principled downstream statistical analysis.Code for our new fully Bayesian ComBat extension is available at https://github.com/batmanlab/BayesComBat.


Brain , Neuroimaging , Humans , Bayes Theorem , Brain/diagnostic imaging , Research Design
13.
Nat Med ; 29(7): 1775-1781, 2023 07.
Article En | MEDLINE | ID: mdl-37248300

An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-ß (Aß)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash Aß effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of Aß with tau phosphorylation in CU individuals. We found that Aß was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast+). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of Aß only in CU Ast+ individuals. Our findings suggest astrocyte reactivity as an important upstream event linking Aß with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , Astrocytes/pathology , Biomarkers , Cross-Sectional Studies , Positron-Emission Tomography , tau Proteins
14.
Sci Adv ; 9(14): eade1474, 2023 04 05.
Article En | MEDLINE | ID: mdl-37018391

Animal studies suggest that the apolipoprotein E ε4 (APOEε4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOEε4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-ß (Aß; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOEε4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for Aß and tau deposition. Furthermore, microglial activation mediated the Aß-independent effects of APOEε4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOEε4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOEε4 genotype exerts Aß-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.


Alzheimer Disease , Microglia , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/metabolism , Microglia/metabolism , Plaque, Amyloid/pathology , Positron-Emission Tomography , tau Proteins/metabolism , Temporal Lobe/metabolism , Apolipoproteins E/metabolism
15.
Neurology ; 101(1): 38-45, 2023 07 04.
Article En | MEDLINE | ID: mdl-36878697

OBJECTIVE: To test the utility of longitudinal changes in plasma phosphorylated tau 181 (p-tau181) and neurofilament light chain (NfL) as surrogate markers for clinical trials targeting cognitively unimpaired (CU) populations. METHODS: We estimated the sample size needed to test a 25% drug effect with 80% of power at a 0.05 level on reducing changes in plasma markers in CU participants from Alzheimer's Disease Neuroimaging Initiative database. RESULTS: We included 257 CU individuals (45.5% males; mean age = 73 [6] years; 32% ß-amyloid [Aß] positive). Changes in plasma NfL were associated with age, whereas changes in plasma p-tau181 with progression to amnestic mild cognitive impairment. Clinical trials using p-tau181 and NfL would require 85% and 63% smaller sample sizes, respectively, for a 24-month than a 12-month follow-up. A population enrichment strategy using intermediate levels of Aß PET (Centiloid 20-40) further reduced the sample size of the 24-month clinical trial using p-tau181 (73%) and NfL (59%) as a surrogate. DISCUSSION: Plasma p-tau181/NfL can potentially be used to monitor large-scale population interventions in CU individuals. The enrollment of CU with intermediate Aß levels constitutes the alternative with the largest effect size and most cost-effective for trials testing drug effect on changes in plasma p-tau181 and NfL.


Alzheimer Disease , Cognitive Dysfunction , Male , Humans , Aged , Female , Intermediate Filaments , Research Design , Biomarkers , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , tau Proteins
16.
Alzheimers Dement ; 19(9): 3815-3825, 2023 09.
Article En | MEDLINE | ID: mdl-36919582

INTRODUCTION: Amyloid-ß (Aß) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers. METHODS: We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography Aß, p-tau, and albumin measures. RESULTS: Plasma Aß42/40 better identified CSF Aß42/40 and Aß-PET positivity in individuals with high BBB permeability. An interaction between plasma Aß42/40 and BBB permeability on CSF Aß42/40 was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma Aß was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels. DISCUSSION: These findings suggest that BBB integrity may influence the performance of plasma Aß, but not p-tau, biomarkers in research and clinical settings. HIGHLIGHTS: BBB permeability affects the association between brain and plasma Aß levels. BBB integrity does not affect the association between brain and plasma p-tau levels. Plasma Aß was most affected by BBB permeability in AD-related brain regions. BBB permeability increases with age but not according to cognitive status.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Brain/pathology , Positron-Emission Tomography , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
17.
J Nucl Med ; 64(3): 452-459, 2023 03.
Article En | MEDLINE | ID: mdl-36396455

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) tau PET tracer quantifies the brain tau neurofibrillary tangle load in Alzheimer disease. The aims of our study were to test the stability of common reference region estimates in the cerebellum over time and across diagnoses and evaluate the effects of age-related and off-target retention on the longitudinal quantification of [18F]MK6240 in target regions. Methods: We assessed reference, target, age-related, and off-target regions in 125 individuals across the aging and Alzheimer disease spectrum with longitudinal [18F]MK6240 SUVs and SUV ratios (SUVRs) (mean ± SD, 2.25 ± 0.40 y of follow-up). We obtained SUVR from meninges, exhibiting frequent off-target retention with [18F]MK6240. Additionally, we compared tracer uptake between 37 cognitively unimpaired young (CUY) (mean age, 23.41 ± 3.33 y) and 27 cognitively unimpaired older (CU) adults (amyloid-ß-negative and tau-negative, 58.50 ± 9.01 y) to identify possible nonvisually apparent, age-related signal. Two-tailed t testing and Pearson correlation testing were used to determine the difference between groups and associations between changes in region uptake, respectively. Results: Inferior cerebellar gray matter SUV did not differ on the basis of diagnosis and amyloid-ß status, cross-sectionally and over time. [18F]MK6240 uptake significantly differed between CUY and CU adults in the putamen or pallidum (affecting ∼75% of the region) and in the Braak II region (affecting ∼35%). Changes in meningeal and putamen or pallidum SUVRs did not significantly differ from zero, nor did they vary across diagnostic groups. We did not observe significant correlations between longitudinal changes in age-related or meningeal off-target retention and changes in target regions, whereas changes in all target regions were strongly correlated. Conclusion: Inferior cerebellar gray matter was similar across diagnostic groups cross-sectionally and stable over time and thus was deemed a suitable reference region for quantification. Despite not being visually perceptible, [18F]MK6240 has age-related retention in subcortical regions, at a much lower magnitude but topographically colocalized with significant off-target signal of the first-generation tau tracers. The lack of correlation between changes in age-related or meningeal and target retention suggests little influence of possible off-target signals on longitudinal tracer quantification. Nevertheless, the age-related retention in the Braak II region needs to be further investigated. Future postmortem studies should elucidate the source of the newly reported age-related [18F]MK6240 signal, and in vivo studies should further explore its impact on tracer quantification.


Alzheimer Disease , Humans , Young Adult , Adult , Alzheimer Disease/diagnostic imaging , Positron-Emission Tomography , Neurofibrillary Tangles/metabolism , Brain/metabolism , Amyloid beta-Peptides , tau Proteins/metabolism
18.
Mol Psychiatry ; 28(3): 1248-1255, 2023 03.
Article En | MEDLINE | ID: mdl-36476732

Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-ß (Aß) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau181), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain Aß deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau181 levels and frontoparietal atrophy in CU Aß-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in Aß-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of Aß pathology.


Alzheimer Disease , Attention Deficit Disorder with Hyperactivity , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides , Positron-Emission Tomography/methods , Risk Factors , tau Proteins , Biomarkers/cerebrospinal fluid
19.
Am J Geriatr Psychiatry ; 31(2): 112-123, 2023 02.
Article En | MEDLINE | ID: mdl-36274019

OBJECTIVE: Small Vessel Disease (SVD) is known to be associated with higher AD risk, but its relationship to amyloidosis in the progression of AD is unclear. In this cross-sectional study of cognitively normal older adults, we explored the interactive effects of SVD and amyloid-beta (Aß) pathology on hippocampal functional connectivity during an associative encoding task and on hippocampal volume. METHODS: This study included 61 cognitively normal older adults (age range: 65-93 years, age mean ± standard deviation: 75.8 ± 6.4, 41 [67.2%] female). PiB PET, T2-weighted FLAIR, T1-weighted and face-name fMRI images were acquired on each participant to evaluate brain Aß, white matter hyperintensities (WMH+/- status), gray matter density, and hippocampal functional connectivity. RESULTS: We found that, in WMH (+) older adults greater Aß burden was associated with greater hippocampal local connectivity (i.e., hippocampal-parahippocampal connectivity) and lower gray matter density in medial temporal lobe (MTL), whereas in WMH (-) older adults greater Aß burden was associated with greater hippocampal distal connectivity (i.e., hippocampal-prefrontal connectivity) and no changes in MTL gray matter density. Moreover, greater hippocampal local connectivity was associated with MTL atrophy. CONCLUSION: These observations support a hippocampal excitotoxicity model linking SVD to neurodegeneration in preclinical AD. This may explain how SVD may accelerate the progression from Aß positivity to neurodegeneration, and subsequent AD.


Alzheimer Disease , Hippocampus , Humans , Female , Aged , Aged, 80 and over , Male , Cross-Sectional Studies , Hippocampus/diagnostic imaging , Hippocampus/pathology , Brain/metabolism , Amyloid beta-Peptides/metabolism , Magnetic Resonance Imaging , Atrophy/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology
20.
Mol Psychiatry ; 27(11): 4781-4789, 2022 Nov.
Article En | MEDLINE | ID: mdl-35948658

Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-ß (Aß) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aß ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aß-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aß-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aß and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aß and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/pathology , Positron-Emission Tomography/methods , tau Proteins/cerebrospinal fluid
...