Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Biol Psychiatry ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38154503

ABSTRACT

BACKGROUND: Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS: We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS: Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS: These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.

2.
Elife ; 62017 02 23.
Article in English | MEDLINE | ID: mdl-28231043

ABSTRACT

Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.


Subject(s)
Cell Differentiation , Hippocampus/physiology , Neurons/drug effects , Neurons/physiology , Oxytocin/metabolism , Signal Transduction , Animals , Cells, Cultured , Mice, Knockout
3.
Eur J Neurosci ; 43(5): 640-52, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26750440

ABSTRACT

Disturbance of homeostasis within the endoplasmic reticulum (ER) lumen leads to the accumulation of unfolded and misfolded proteins. This results in the activation of an evolutionary conserved stress response termed ER stress that, if unresolved, induces apoptosis. Previously the Bcl-2 homology domain 3-Only Protein Puma was identified as a mediator of ER stress-induced apoptosis in neurons. In the search of alternative contributors to ER stress-induced apoptosis, a downregulation of the anti-apoptotic Bcl-2 family protein Mcl-1 was noted during ER stress in both mouse cortical neurons and human SH-SY5Y neuroblastoma cells. Downregulation of Mcl-1 was associated with an upregulation of microRNA-29a (miR-29a) expression, and subsequent experiments showed that miR-29a targeted the 3'-untranslated region of the anti-apoptotic Bcl-2 family protein, Mcl-1. Inhibition of miR-29a expression using sequence-specific antagomirs or the overexpression of Mcl-1 decreased cell death following tunicamycin treatment, while gene silencing of Mcl-1 increased cell death. miR-29a did not alter the signalling branches of the ER stress response, rather its expression was controlled by the ER stress-induced transcription factor activating-transcription-factor-4 (ATF4). The current data demonstrate that the ATF4-mediated upregulation of miR-29a enhances the sensitivity of neurons to ER stress-induced apoptosis.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , MicroRNAs/genetics , Neurons/metabolism , Up-Regulation , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cells, Cultured , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
4.
Biochem J ; 446(2): 321-30, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22671294

ABSTRACT

Neuroligins are postsynaptic adhesion proteins involved in the establishment of functional synapses in the central nervous system. In rodents, four genes give rise to neuroligins that function at distinct synapses, with corresponding neurotransmitter and subtype specificities. In the present study, we examined the interactions between the different neuroligins by isolating endogenous oligomeric complexes using in situ cross-linking on primary neurons. Examining hippocampal, striatal, cerebellar and spinal cord cultures, we found that neuroligins form constitutive dimers, including homomers and, most notably, neuroligin 1/3 heteromers. Additionally, we found that neuroligin monomers are specifically retained in the secretory pathway through a cellular quality control mechanism that involves the neuroligin transmembrane domain, ensuring that dimerization occurs prior to cell surface trafficking. Lastly, we identified differences in the dimerization capacity of autism-associated neuroligin mutants, and found that neuroligin 3 R471C mutants can form heterodimers with neuroligin 1. The pervasive nature of neuroligin dimerization indicates that the unit of neuroligin function is the dimer, and raises intriguing possibilities of distinct heterodimer functions, and of interactions between native and mutant neuroligins contributing to disease phenotypes.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Amino Acid Substitution , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain/cytology , Brain/embryology , COS Cells , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/genetics , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Cross-Linking Reagents/chemistry , Dimerization , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neurons/cytology , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Spinal Cord/cytology , Spinal Cord/embryology
5.
Curr Opin Neurobiol ; 22(3): 412-22, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22424845

ABSTRACT

Neurexins (NXs) and neuroligins (NLs) are transsynaptically interacting cell adhesion proteins that play a key role in the formation, maturation, activity-dependent validation, and maintenance of synapses. As complex alternative splicing processes in nerve cells generate a large number of NX and NLs variants, it has been proposed that a combinatorial interaction code generated by these variants may determine synapse identity and network connectivity during brain development. The functional importance of NXs and NLs is exemplified by the fact that mutations in NX and NL genes are associated with several neuropsychiatric disorders, most notably with autism. Accordingly, major research efforts have focused on the molecular mechanisms by which NXs and NLs operate at synapses. In this review, we summarize recent progress in this field and discuss emerging topics, such as the role of alternative interaction partners of NXs and NLs in synapse formation and function, and their relevance for synaptic plasticity in the mature brain. The novel findings highlight the fundamental importance of NX-NL interactions in a wide range of synaptic functions.


Subject(s)
Cell Adhesion Molecules, Neuronal/physiology , Nerve Tissue Proteins/physiology , Neurons/physiology , Synapses/physiology , Alternative Splicing/physiology , Animals , Axons/physiology , Cell Adhesion Molecules, Neuronal/genetics , Dendrites/physiology , Humans , Models, Biological , Nerve Tissue Proteins/genetics , Neurons/cytology , Vertebrates
6.
J Neurosci ; 32(5): 1847-58, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22302823

ABSTRACT

Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.


Subject(s)
Apoptosis/physiology , Calpain/physiology , Hippocampus/metabolism , bcl-2-Associated X Protein/physiology , Animals , Calpain/antagonists & inhibitors , Cell Line, Tumor , Cells, Cultured , Dipeptides/physiology , Excitatory Amino Acid Agonists/pharmacology , Female , Hippocampus/drug effects , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , N-Methylaspartate/pharmacology , Organ Culture Techniques , Pregnancy , bcl-2-Associated X Protein/agonists
7.
Antioxid Redox Signal ; 14(10): 1863-76, 2011 May 15.
Article in English | MEDLINE | ID: mdl-20712420

ABSTRACT

5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of cellular energy status. AMPK signaling regulates energy balance at the cellular, organ, and whole-body level. More recently, it has become apparent that AMPK plays also an important role in long-term decisions that determine cell fate, in particular cell cycle progression and apoptosis activation. Here, we describe the diverse mechanisms of AMPK activation and the role of AMPK in the regulation of cellular energy balance. We summarize recent studies implicating AMPK activation in the regulation of neuronal survival and as a key player during ischemic stroke. We also suggest that AMPK activation may have dual functions in the regulation of neuronal survival: AMPK provides a protective effect during transient energy depletion as exemplified in a model of neuronal Ca(2+) overloading, and this effect is partially mediated by the activation of neuronal glucose transporter 3. Prolonged AMPK activation, on the contrary, can lead to neuronal apoptosis via the transcriptional activation of the proapoptotic Bcl-2 family member, bim. Molecular switches that determine the protective versus cell death-inducing effects of AMPK activation are discussed.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cell Survival/physiology , Neurons/enzymology , Neurons/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Survival/genetics , Humans
8.
Mol Cell Biol ; 30(23): 5484-501, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20921277

ABSTRACT

Proteasomal stress and the accumulation of polyubiquitinated proteins are key features of numerous neurodegenerative disorders. Previously we demonstrated that stabilization of p53 and activation of its target gene, puma (p53-upregulated mediator of apoptosis), mediated proteasome inhibitor-induced apoptosis in cancer cells. Here we demonstrated that Puma also contributed to proteasome inhibitor-induced apoptosis in mouse neocortical neurons. Although protection afforded by puma gene deletion was incomplete, we found little evidence indicating contributions from other proapoptotic BH3-only proteins. Attenuation of bax expression did not further reduce Puma-independent apoptosis, suggesting that pathways other than the mitochondrial apoptosis pathway were activated. Real-time imaging experiments in wild-type and puma-deficient neurons using a fluorescence resonance energy transfer (FRET)-based caspase sensor confirmed the involvement of a second cell death pathway characterized by caspase activation prior to mitochondrial permeabilization and, more prominently, a third, caspase-independent and Puma-independent pathway characterized by rapid cell shrinkage and nuclear condensation. This pathway involved lysosomal permeabilization in the absence of autophagy activation and was sensitive to cathepsin but not autophagy inhibition. Our data demonstrate that proteasomal stress activates distinct cell death pathways in neurons, leading to both caspase-dependent and caspase-independent apoptosis, and demonstrate independent roles for Puma and lysosomal permeabilization in this model.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Proteasome Inhibitors , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis/physiology , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Autophagy , BH3 Interacting Domain Death Agonist Protein/deficiency , BH3 Interacting Domain Death Agonist Protein/genetics , Base Sequence , Bcl-2-Like Protein 11 , Caspase 3/metabolism , Cathepsins/metabolism , Cytochromes c/metabolism , DNA Primers/genetics , Fluorescence Resonance Energy Transfer , Gene Expression , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Potential, Mitochondrial , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurons/drug effects , Protease Inhibitors/pharmacology , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Small Interfering/genetics , Stress, Physiological , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
9.
J Cell Biol ; 189(1): 83-94, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20351066

ABSTRACT

Excitotoxicity after glutamate receptor overactivation induces disturbances in cellular ion gradients, resulting in necrosis or apoptosis. Excitotoxic necrosis is triggered by rapid, irreversible ATP depletion, whereas the ability to recover cellular bioenergetics is suggested to be necessary for the activation of excitotoxic apoptosis. In this study, we demonstrate that even a transient decrease in cellular bioenergetics and an associated activation of adenosine monophosphate-activated protein kinase (AMPK) is necessary for the activation of excitotoxic apoptosis. We show that the Bcl-2 homology domain 3 (BH3)-only protein Bim, a proapoptotic Bcl-2 family member, is activated in multiple excitotoxicity paradigms, mediates excitotoxic apoptosis, and inhibits delayed Ca(2+) deregulation, mitochondrial depolarization, and apoptosis-inducing factor translocation. We demonstrate that bim activation required the activation of AMPK and that prolonged AMPK activation is sufficient to induce bim gene expression and to trigger a bim-dependent cell death. Collectively, our data demonstrate that AMPK activation and the BH3-only protein Bim couple transient energy depletion to stress-induced neuronal apoptosis.


Subject(s)
Adenylate Kinase/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis , Membrane Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Adenylate Kinase/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Cell Death , Cells, Cultured , Membrane Proteins/genetics , Mice , Mice, Transgenic , Microscopy, Confocal , Neurons/metabolism , Proto-Oncogene Proteins/genetics , Rats
10.
J Neurochem ; 105(3): 891-903, 2008 May.
Article in English | MEDLINE | ID: mdl-18088354

ABSTRACT

Disruption of endoplasmic reticulum (ER) Ca2+ homeostasis and ER dysfunction have been suggested to contribute to excitotoxic and ischaemic neuronal injury. Previously, we have characterized the neural transcriptome following ER stress and identified the BH3-only protein, p53 up-regulated mediator of apoptosis (PUMA), as a central mediator of ER stress toxicity. In this study, we investigated the effects of excitotoxic injury on ER Ca2+ levels and induction of ER stress responses in models of glutamate- and NMDA-induced excitotoxic apoptosis. While exposure to the ER stressor tunicamycin induced an ER stress response in cerebellar granule neurons, transcriptional activation of targets of the ER stress response, including PUMA, were absent following glutamate-induced apoptosis. Confocal imaging revealed no long-term changes in the ER Ca2+ level in response to glutamate. Murine cortical neurons and organotypic hippocampal slice cultures from PUMA+/+ and PUMA-/- animals provided no evidence of ER stress and did not differ in their sensitivity to NMDA. Finally, NMDA-induced excitotoxic apoptosis in vivo was not associated with ER stress, nor did deficiency in PUMA alleviate the injury induced. Our data suggest that NMDA receptor-mediated excitotoxic apoptosis occurs in vitro and in vivo in an ER stress and PUMA independent manner.


Subject(s)
Apoptosis/physiology , Endoplasmic Reticulum/metabolism , Neurotoxins/metabolism , Oxidative Stress/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis Regulatory Proteins , Brain/metabolism , Brain/physiopathology , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Epilepsy/metabolism , Epilepsy/physiopathology , Female , Glutamic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neurons/metabolism , Organ Culture Techniques , Rats , Rats, Wistar , Tumor Suppressor Proteins/genetics , Tunicamycin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL