Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters











Publication year range
1.
mBio ; 14(2): e0026123, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36883814

ABSTRACT

In 1970, the Southern Corn Leaf Blight epidemic ravaged U.S. fields to great economic loss. The outbreak was caused by never-before-seen, supervirulent, Race T of the fungus Cochliobolus heterostrophus. The functional difference between Race T and O, the previously known, far less aggressive strain, is production of T-toxin, a host-selective polyketide. Supervirulence is associated with ~1 Mb of Race T-specific DNA; only a fraction encodes T-toxin biosynthetic genes (Tox1). Tox1 is genetically and physically complex, with unlinked loci (Tox1A, Tox1B) genetically inseparable from breakpoints of a Race O reciprocal translocation that generated hybrid Race T chromosomes. Previously, we identified 10 genes for T-toxin biosynthesis. Unfortunately, high-depth, short-read sequencing placed these genes on four small, unconnected scaffolds surrounded by repeated A+T rich sequence, concealing context. To sort out Tox1 topology and pinpoint the hypothetical Race O translocation breakpoints corresponding to Race T-specific insertions, we undertook PacBio long-read sequencing which revealed Tox1 gene arrangement and the breakpoints. Six Tox1A genes are arranged as three small islands in a Race T-specific sea (~634 kb) of repeats. Four Tox1B genes are linked, on a large loop of Race T-specific DNA (~210 kb). The race O breakpoints are short sequences of race O-specific DNA; corresponding positions in race T are large insertions of race T-specific, A+T rich DNA, often with similarity to transposable (predominantly Gypsy) elements. Nearby, are 'Voyager Starship' elements and DUF proteins. These elements may have facilitated Tox1 integration into progenitor Race O and promoted large scale recombination resulting in race T. IMPORTANCE In 1970 a corn disease epidemic ravaged fields in the United States to great economic loss. The outbreak was caused by a never-before seen, supervirulent strain of the fungal pathogen Cochliobolus heterostrophus. This was a plant disease epidemic, however, the current COVID-19 pandemic of humans is a stark reminder that novel, highly virulent, pathogens evolve with devastating consequences, no matter what the host-animal, plant, or other organism. Long read DNA sequencing technology allowed in depth structural comparisons between the sole, previously known, much less aggressive, version of the pathogen and the supervirulent version and revealed, in meticulous detail, the structure of the unique virulence-causing DNA. These data are foundational for future analysis of mechanisms of DNA acquisition from a foreign source.


Subject(s)
Ascomycota , COVID-19 , Mycotoxins , Toxins, Biological , Humans , Virulence/genetics , Fungal Proteins/genetics , Pandemics , Toxins, Biological/metabolism , Plant Diseases/microbiology
2.
Nat Commun ; 13(1): 4828, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973982

ABSTRACT

The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.


Subject(s)
Anti-Infective Agents , Biosynthetic Pathways , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism , Aspergillus fumigatus/metabolism , Carbon/metabolism , Copper/metabolism , Cyanides , Fungi/genetics , Multigene Family , Valine/genetics
3.
Proc Natl Acad Sci U S A ; 117(39): 24243-24250, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32929037

ABSTRACT

The necrotrophic fungal pathogen Cochliobolus victoriae produces victorin, a host-selective toxin (HST) essential for pathogenicity to certain oat cultivars with resistance against crown rust. Victorin is a mixture of highly modified heterodetic cyclic hexapeptides, previously assumed to be synthesized by a nonribosomal peptide synthetase. Herein, we demonstrate that victorin is a member of the ribosomally synthesized and posttranslationally modified peptide (RiPP) family of natural products. Analysis of a newly generated long-read assembly of the C. victoriae genome revealed three copies of precursor peptide genes (vicA1-3) with variable numbers of "GLKLAF" core peptide repeats corresponding to the victorin peptide backbone. vicA1-3 are located in repeat-rich gene-sparse regions of the genome and are loosely clustered with putative victorin biosynthetic genes, which are supported by the discovery of compact gene clusters harboring corresponding homologs in two distantly related plant-associated Sordariomycete fungi. Deletion of at least one copy of vicA resulted in strongly diminished victorin production. Deletion of a gene encoding a DUF3328 protein (VicYb) abolished the production altogether, supporting its predicted role in oxidative cyclization of the core peptide. In addition, we uncovered a copper amine oxidase (CAO) encoded by vicK, in which its deletion led to the accumulation of new glycine-containing victorin derivatives. The role of VicK in oxidative deamination of the N-terminal glycyl moiety of the hexapeptides to the active glyoxylate forms was confirmed in vitro. This study finally unraveled the genetic and molecular bases for biosynthesis of one of the first discovered HSTs and expanded our understanding of underexplored fungal RiPPs.


Subject(s)
Ascomycota/metabolism , Fungal Proteins/metabolism , Mycotoxins/metabolism , Ascomycota/genetics , Deamination , Fungal Proteins/genetics , Fungal Proteins/toxicity , Gene Deletion , Multigene Family , Mycotoxins/genetics , Mycotoxins/toxicity , Protein Biosynthesis , Protein Processing, Post-Translational
4.
Phytopathology ; 110(12): 2014-2016, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32689897

ABSTRACT

The heterothallic ascomycete Setosphaeria turcica (anamorph Exserohilum turcicum) causes northern corn leaf blight, which results in devastating yield losses and a reduction in feed value. Although genome sequences of two model strains of the pathogen are available (https://mycocosm.jgi.doe.gov/mycocosm/home), previous drafts were assembled using short read technologies, making evolutionary and genetic linkage inferences difficult. Here, race 23N of S. turcica strain Et28A was sequenced again using Illumina HiSeq and PacBio Sequel technologies, and assembled to approximately 43,480,261 bp on 30 scaffolds. In all, 13,183 protein-coding genes were predicted, 13,142 of them were well annotated. This S. turcica genome resource is important for understanding the genetics behind pathogen evolution and infection mechanisms.


Subject(s)
Ascomycota , Zea mays , Ascomycota/genetics , Genetic Linkage , Plant Diseases
5.
Stud Mycol ; 96: 141-153, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32206138

ABSTRACT

Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species.

6.
Fungal Genet Biol ; 135: 103291, 2020 02.
Article in English | MEDLINE | ID: mdl-31698077

ABSTRACT

Septins are highly conserved GTP-binding proteins that function in cell cytokinesis, polarity and morphogenesis. To evaluate the roles of these proteins in inoculum health and disease, mutants deleted for each of five septin proteins (Cdc3, Cdc10, Cdc11, Cdc12, and Cdc100) were characterized in the ascomycete Cochliobolus heterostrophus for ability to develop asexual and sexual spores and for virulence to the host maize. Strains deleted for CDC3, CDC10, CDC11, and CDC12 genes showed significant changes in hyphal growth, and in development of conidia and ascospores compared to the wild-type strain. Conidia had dramatically reduced numbers of septa and rates of germination, while ascospore development was blocked in the meiotic process. Although asci were produced, wild-type ascospores were not. When equal numbers of conidia from wild type and mutants were used to inoculate maize, cdc10 mutants showed reduced virulence compared to the wild-type strain and other mutants. This reduced virulence was demonstrated to be correlated with lower germination rate of cdc10 mutant conidia. When adjusted for germination rate, virulence was equivalent to the wild-type strain. Double mutants (cdc3cdc10, cdc3cdc11) showed augmented reduced growth phenotypes. cdc100 mutants were wild type in all assays. Taken together, these findings indicate that all four conserved septin proteins play a major role in reproductive propagule formation and that mutants with deletions of CDC10 are reduced in virulence to the host maize.


Subject(s)
Bipolaris/growth & development , Bipolaris/pathogenicity , Fungal Proteins/metabolism , Septins/metabolism , Zea mays/microbiology , Bipolaris/genetics , Fungal Proteins/genetics , Septins/genetics , Spores, Fungal/growth & development , Virulence/genetics
7.
mBio ; 10(2)2019 03 05.
Article in English | MEDLINE | ID: mdl-30837342

ABSTRACT

Histone-linked extracellular DNA (exDNA) is a component of neutrophil extracellular traps (NETs). NETs have been shown to play a role in immune response to bacteria, fungi, viruses, and protozoan parasites. Mutation of genes encoding group A Streptococcus extracellular DNases (exDNases) results in reduced virulence in animals, a finding that implies that exDNases are deployed as counter defense against host DNA-containing NETs. Is the exDNA/exDNase mechanism also relevant to plants and their pathogens? It has been demonstrated previously that exDNA is a component of a matrix secreted from plant root caps and that plants also carry out an extracellular trapping process. Treatment with DNase I destroys root tip resistance to infection by fungi, the most abundant plant pathogens. We show that the absence of a single gene encoding a candidate exDNase results in significantly reduced virulence of a fungal plant pathogen to its host on leaves, the known infection site, and on roots. Mg2+-dependent exDNase activity was demonstrated in fungal culture filtrates and induced when host leaf material was present. It is speculated that the enzyme functions to degrade plant-secreted DNA, a component of a complex matrix akin to neutrophil extracellular traps of animals.IMPORTANCE We document that the absence of a single gene encoding a DNase in a fungal plant pathogen results in significantly reduced virulence to a plant host. We compared a wild-type strain of the maize pathogen Cochliobolus heterostrophus and an isogenic mutant lacking a candidate secreted DNase-encoding gene and demonstrated that the mutant is reduced in virulence on leaves and on roots. There are no previous reports of deletion of such a gene from either an animal or plant fungal pathogen accompanied by comparative assays of mutants and wild type for alterations in virulence. We observed DNase activity, in fungal culture filtrates, that is Mg2+ dependent and induced when plant host leaf material is present. Our findings demonstrate not only that fungi use extracellular DNases (exDNases) for virulence, but also that the relevant molecules are deployed in above-ground leaves as well as below-ground plant tissues. Overall, these data provide support for a common defense/counter defense virulence mechanism used by animals, plants, and their fungal and bacterial pathogens and suggest that components of the mechanism might be novel targets for the control of plant disease.


Subject(s)
Ascomycota/enzymology , Ascomycota/growth & development , DNA, Plant/metabolism , Deoxyribonucleases/metabolism , Host-Pathogen Interactions , Plant Diseases/microbiology , Virulence Factors/metabolism , Animals , Hydrolysis , Plant Leaves/microbiology , Plant Roots/microbiology , Zea mays
8.
Plant Cell ; 30(7): 1562-1581, 2018 07.
Article in English | MEDLINE | ID: mdl-29871985

ABSTRACT

In plant-microbe interactions, plant sugars produced by photosynthesis are not only a carbon source for pathogens, but may also act as signals that modulate plant defense responses. Here, we report that decreasing sorbitol synthesis in apple (Malus domestica) leaves by antisense suppression of ALDOSE-6-PHOSPHATE REDUCTASE (A6PR) leads to downregulation of 56 NUCLEOTIDE BINDING/LEUCINE-RICH REPEAT (NLR) genes and converts the phenotypic response to Alternaria alternata from resistant to susceptible. We identified a resistance protein encoded by the apple MdNLR16 gene and a small protein encoded by the fungal HRIP1 gene that interact in both a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. Deletion of HRIP1 in A. alternata enables gain of virulence on the wild-type control plant. Overexpression of MdNLR16 in two antisense A6PR lines increases resistance, whereas RNAi suppression of MdNLR16 in the wild-type control decreases resistance against A. alternata MdWRKY79 transcriptionally regulates MdNLR16 by binding to the promoter of MdNLR16 in response to sorbitol, and exogenous sorbitol feeding partially restores resistance of the antisense A6PR lines to A. alternata These findings indicate that sorbitol modulates resistance to A. alternata via the MdNLR16 protein that interacts with the fungal effector in a classic gene-for-gene manner in apple.


Subject(s)
Alternaria/pathogenicity , Malus/metabolism , Malus/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Sorbitol/pharmacology , Disease Resistance/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Malus/genetics , Plant Proteins/genetics
9.
Mol Plant Microbe Interact ; 31(11): 1154-1165, 2018 11.
Article in English | MEDLINE | ID: mdl-29792566

ABSTRACT

The Southern corn leaf blight (SCLB) epidemic of 1970 devastated fields of T-cytoplasm corn planted in monoculture throughout the eastern United States. The epidemic was driven by race T, a previously unseen race of Cochliobolus heterostrophus. A second fungus, Phyllosticta zeae-maydis, with the same biological specificity, appeared coincidentally. Race T produces T-toxin, while Phyllosticta zeae-maydis produces PM-toxin, both host-selective polyketide toxins necessary for supervirulence. The present abundance of genome sequences offers an opportunity to tackle the evolutionary origins of T- and PM- toxin biosynthetic genes, previously thought unique to these species. Using the C. heterostrophus genes as probes, we identified orthologs in six additional Dothideomycete and three Eurotiomycete species. In stark contrast to the genetically fragmented race T Tox1 locus that encodes these genes, all newly found Tox1-like genes in other species reside at a single collinear locus. This compact arrangement, phylogenetic analyses, comparisons of Tox1 protein tree topology to a species tree, and Tox1 gene characteristics suggest that the locus is ancient and that some species, including C. heterostrophus, gained Tox1 by horizontal gene transfer. C. heterostrophus and Phyllosticta zeae-maydis did not exchange Tox1 DNA at the time of the SCLB epidemic, but how they acquired Tox1 remains uncertain. The presence of additional genes in Tox1-like clusters of other species, although not in C. heterostrophus and Phyllosticta zeae-maydis, suggests that the metabolites produced differ from T- and PM-toxin.


Subject(s)
Ascomycota/genetics , Fungal Proteins/genetics , Mycotoxins/metabolism , Plant Diseases/microbiology , Zea mays/microbiology , Ascomycota/metabolism , Biological Evolution , Fungal Proteins/metabolism , Multigene Family , Mutation , Mycotoxins/genetics , Phylogeny , Plant Leaves/microbiology
10.
Phytopathology ; 108(6): 780-788, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29318912

ABSTRACT

Verticillium dahliae is a plant pathogenic fungus that reproduces asexually and its population structure is highly clonal. In the present study, 78 V. dahliae isolates from Iran were genotyped for mating type, single nucleotide polymorphisms (SNPs), and microsatellites to assign them to clonal lineages and to determine population genetic structure in Iran. The mating type of all isolates was MAT1-2. Based on neighbor-joining analysis and minimum spanning networks constructed from SNPs and microsatellite genotypes, respectively, all but four isolates were assigned to lineage 2B824; four isolates were assigned to lineage 4B. The inferred coalescent genealogy of isolates in lineage 2B824 showed a clear divergence into two clades that corresponded to geographic origin and host. Haplotypes of cotton and pistachio isolates sampled from central Iran were in one clade, and those of isolates from Prunus spp. sampled from northwestern Iran were in the other. The strong divergence in haplotypes between the two clades suggests that there were at least two separate introductions of lineage 2B824 to different parts of Iran. Given the history of cotton and pistachio cultivation and Verticillium wilt in Iran, these results are consistent with the hypothesis that cotton was historically a likely source inoculum causing Verticillium wilt in pistachio.


Subject(s)
DNA, Fungal/genetics , Microsatellite Repeats , Polymorphism, Single Nucleotide/genetics , Verticillium/genetics , Iran
11.
Phytopathology ; 108(2): 254-263, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28952420

ABSTRACT

Generating effective and stable strategies for resistance breeding requires an understanding of the genetics of host-pathogen interactions and the implications for pathogen dynamics and evolution. Setosphaeria turcica causes northern leaf blight (NLB), an important disease of maize for which major resistance genes have been deployed. Little is known about the evolutionary dynamics of avirulence (AVR) genes in S. turcica. To test the hypothesis that there is a genetic association between avirulence and in vitro development traits, we (i) created a genetic map of S. turcica, (ii) located candidate AVRHt1 and AVRHt2 regions, and (iii) identified genetic regions associated with several in vitro development traits. A cross was generated between a race 1 and a race 23N strain, and 221 progeny were isolated. Genotyping by sequencing was used to score 2,078 single-nucleotide polymorphism markers. A genetic map spanning 1,981 centimorgans was constructed, consisting of 21 linkage groups. Genetic mapping extended prior evidence for the location and identity of the AVRHt1 gene and identified a region of interest for AVRHt2. The genetic location of AVRHt2 colocalized with loci influencing radial growth and mycelial abundance. Our data suggest a trade-off between virulence on Ht1 and Ht2 and the pathogen's vegetative growth rate. In addition, in-depth analysis of the genotypic data suggests the presence of significant duplication in the genome of S. turcica.


Subject(s)
Ascomycota/genetics , Fungal Proteins/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide/genetics , Zea mays/microbiology , Ascomycota/pathogenicity , Chromosome Mapping , Genetic Linkage , Genotype , Host-Pathogen Interactions , Phenotype , Virulence
12.
PLoS Genet ; 13(9): e1006981, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28892488

ABSTRACT

The filamentous fungus Chromocrea spinulosa (Trichoderma spinulosum) exhibits both self-fertile (homothallic) and self-sterile (heterothallic) sexual reproductive behavior. Self-fertile strains produce progeny cohorts that are 50% homothallic, 50% heterothallic. Heterothallic progeny can mate only with homothallic strains, and progeny also segregate 50% homothallic, 50% heterothallic. Sequencing of the mating type (MAT) region of homothallic and heterothallic strains revealed that both carry an intact MAT1-1 locus with three MAT1-1 genes (MAT1-1-1, MAT1-1-2, MAT1-1-3), as previously described for the Sordariomycete group of filamentous fungi. Homothallic strains, however, have a second version of MAT with the MAT1-2 locus genetically linked to MAT1-1. In this version, the MAT1-1-1 open reading frame is split into a large and small fragment and the truncated ends are bordered by 115bp direct repeats (DR). The MAT1-2-1 gene and additional sequences are inserted between the repeats. To understand the mechanism whereby C. spinulosa can exhibit both homothallic and heterothallic behavior, we utilized molecular manipulation to delete one of the DRs from a homothallic strain and insert MAT1-2 into a heterothallic strain. Mating assays indicated that: i) the DRs are key to homothallic behavior, ii) looping out of MAT1-2-1 via intra-molecular homologous recombination between the DRs in self-fertile strains results in two nuclear types in an individual (one carrying both MAT1-1 and MAT1-2 and one carrying MAT1-1 only), iii) self-fertility is achieved by inter-nuclear recognition between these two nuclear types before meiosis, iv) the two types of nuclei are in unequal proportion, v) having both an intact MAT1-1-1 and MAT1-2-1 gene in a single nucleus is not sufficient for self-fertility, and vi) the large truncated MAT1-1-1 fragment is expressed. Comparisons with MAT regions of Trichoderma reesei and Trichoderma virens suggest that several crossovers between misaligned parental MAT chromosomes may have led to the MAT architecture of homothallic C. spinulosa.


Subject(s)
Fungal Proteins/genetics , Genes, Mating Type, Fungal/genetics , Reproduction/genetics , Trichoderma/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Fertility/genetics , Meiosis/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Trichoderma/growth & development
13.
Fungal Genet Biol ; 98: 23-34, 2017 01.
Article in English | MEDLINE | ID: mdl-27876630

ABSTRACT

Based on genomic analysis, polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways account for biosynthesis of the majority of the secondary metabolites produced by the entomopathogenic fungus Metarhizium robertsii. To evaluate the contribution of these pathways to M. robertsii fitness and/or virulence, mutants deleted for mrpptA, the Sfp-type 4' phosphopantetheinyl transferase gene required for their activation were generated. ΔmrpptA strains were deficient in PKS and NRPS activity resulting in colonies that lacked the typical green pigment and failed to produce the nonribosomal peptides (destruxins, serinocylins, and the siderophores ferricrocin and metachelins) as well as the hybrid polyketide-peptides (NG-39x) that are all produced by the wild type (WT) M. robertsii. The ΔmrpptA colonies were also auxotrophic for lysine. Two other mutant strains were generated: ΔmraarA, in which the α-aminoadipate reductase gene critical for lysine biosynthesis was disrupted, and ΔmrsidA, in which the L-ornithine N5-oxygenase gene that is critical for hydroxamate siderophore biosynthesis was disrupted. The phenotypes of these mutants were compared to those of ΔmrpptA to separate effects of the loss of lysine or siderophore production from the overall effect of losing all polyketide and non-ribosomal peptide production. Loss of lysine biosynthesis marginally increased resistance to H2O2 while it had little effect on the sensitivity to the cell wall disruptor sodium dodecyl sulfate (SDS) and no effect on sensitivity to iron deprivation. In contrast, combined loss of metachelin and ferricrocin through the inactivation of mrsidA resulted in mutants that were as hypersensitive or slightly more sensitive to H2O2, iron deprivation, and SDS, and were either identical or marginally higher in ΔmrpptA strains. In contrast to ΔmrpptA, loss of mrsidA did not completely abolish siderophore activity, which suggests the production of one or more non-hydroxamate iron-chelating compounds. Deletion of mrpptA, mrsidA, and mraarA reduced conidium production and conidia of a GFP-tagged ΔmrpptA strain displayed a longer germination delay than WT on insect cuticles, a deficiency that was rescued by lysine supplementation. Compared with WT, ΔmrpptA strains displayed ∼19-fold reduction in virulence against Drosophila suzukii. In contrast, lysine auxotrophy and loss of siderophores accounted for ∼2 and ∼6-fold decreases in virulence, respectively. Deletion of mrpptA had no significant effect on growth inhibition of Bacillus cereus. Our results suggest that PKS and NRPS metabolism plays a significant role in M. robertsii virulence, depresses conidium production, and contributes marginally to resistance to oxidative stress and iron homeostasis, but has no significant antibacterial effect.


Subject(s)
Fungal Proteins/genetics , Lysine/genetics , Metarhizium/genetics , Peptide Synthases/genetics , Polyketide Synthases/genetics , Animals , Drosophila/microbiology , Fungal Proteins/metabolism , Iron/metabolism , Lysine/biosynthesis , Metarhizium/metabolism , Metarhizium/pathogenicity , Mutation , Oxidative Stress/genetics , Peptide Synthases/metabolism , Polyketide Synthases/metabolism , Secondary Metabolism/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/pathogenicity
14.
Fungal Genet Biol ; 98: 46-51, 2017 01.
Article in English | MEDLINE | ID: mdl-27919652

ABSTRACT

A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates.


Subject(s)
Chromosomes, Fungal/genetics , Fungal Proteins/genetics , Fusarium/genetics , Plant Diseases/microbiology , Fusarium/pathogenicity , Karyotyping , Solanum lycopersicum/microbiology , Phylogeny , Plant Diseases/genetics
15.
Microbiol Spectr ; 4(5)2016 10.
Article in English | MEDLINE | ID: mdl-27763253

ABSTRACT

This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.


Subject(s)
Ascomycota/physiology , Ascomycota/genetics , Genes, Fungal , Genes, Mating Type, Fungal , Reproduction, Asexual
16.
Annu Rev Phytopathol ; 54: 143-61, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27215971

ABSTRACT

Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.


Subject(s)
Plant Diseases/immunology , Plant Immunity , Plant Roots/immunology , Ascomycota/genetics , Ascomycota/physiology , Meristem/immunology , Meristem/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , Ralstonia solanacearum/genetics , Ralstonia solanacearum/physiology
17.
Mol Plant Pathol ; 17(6): 805-17, 2016 08.
Article in English | MEDLINE | ID: mdl-26456797

ABSTRACT

Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.


Subject(s)
Ascomycota/genetics , Oryza/microbiology , Peptides, Cyclic/genetics , Plant Diseases/microbiology , Virulence Factors/genetics , Ascomycota/growth & development , Ascomycota/pathogenicity , Chromatography, High Pressure Liquid , Conserved Sequence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Genes, Fungal , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Reproducibility of Results , Sequence Homology, Amino Acid , Spores, Fungal/physiology , Tandem Mass Spectrometry , Virulence Factors/metabolism
18.
Mol Plant Microbe Interact ; 28(10): 1130-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26168137

ABSTRACT

The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.


Subject(s)
Ascomycota , Fungal Proteins/genetics , Oryza/microbiology , Plant Diseases/microbiology , Siderophores/metabolism , Zea mays/microbiology , Ascomycota/enzymology , Ascomycota/genetics , Ascomycota/pathogenicity , Ascomycota/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Iron/metabolism , L-Aminoadipate-Semialdehyde Dehydrogenase/genetics , L-Aminoadipate-Semialdehyde Dehydrogenase/metabolism , Mutation , Mycotoxins/metabolism , Oxidative Stress , Peptide Synthases/genetics , Peptide Synthases/metabolism , Phenotype , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Spores, Fungal , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , Virulence
19.
Fungal Genet Biol ; 81: 12-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26051492

ABSTRACT

ToxA, the first discovered fungal proteinaceous host-selective toxin (HST), was originally identified in 1989 from the tan spot fungus Pyrenophora tritici-repentis (Ptr). About 25years later, a homolog was identified in the leaf/glume blotch fungus Stagonospora nodorum (Parastagonospora nodorum), also a pathogen of wheat. Here we report the identification and function of a ToxA-like protein from the maize pathogen Cochliobolus heterostrophus (Ch) that possesses necrosis-inducing activity specifically against maize. ChToxA is encoded by a 535-bp open reading frame featuring a ToxA-specific intron with unusual splicing sites (5'-ATAAGT…TAC-3') at conserved positions relative to PtrToxA. The protein shows 64% similarity to PtrToxA and is predicted to adopt a similar three-dimensional structure, although lacking the arginyl-glycyl-aspartic acid (RGD) motif reported to be required for internalization into sensitive wheat mesophyll cells. Reverse-transcriptase PCR revealed that the ChTOXA gene expression is up-regulated in planta, relative to axenic culture. Plant assays indicated that the recombinant ChToxA protein induces light-dependent leaf necrosis in a host-selective manner on maize inbred lines. Gene deletion experiments confirmed that ChtoxA mutants are reduced in virulence on specific ChToxA-sensitive maize lines, relative to virulence caused by wild-type strains. Database searches identified potential ChToxA homologues in other plant-pathogenic ascomycetes. Sequence and phylogenetic analyses revealed that the corresponding ToxA-like proteins include one member recently shown to be associated with formation of penetration hypha. These results provide the first evidence that C. heterostrophus is capable of producing proteinaceous HSTs as virulence factors in addition to well-known secondary metabolite-type toxins produced biosynthetically by polyketide synthase megaenzymes. Further studies on ChToxA may provide new insights into effector evolution in host-pathogen interactions.


Subject(s)
Ascomycota/genetics , Fungal Proteins/metabolism , Light , Mycotoxins/metabolism , Plant Diseases/microbiology , Virulence Factors/metabolism , Zea mays/microbiology , Ascomycota/pathogenicity , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungal Proteins/genetics , Gene Deletion , Gene Expression , Gene Expression Profiling , Molecular Sequence Data , Mycotoxins/genetics , Necrosis , Open Reading Frames , Plants, Genetically Modified/genetics , Protein Conformation , RNA Splicing , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL