Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Phytochemistry ; 205: 113454, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36244403

ABSTRACT

Cultivated plants of Gossypium hirsutum Cav. (cotton) consistently emit low levels of volatile organic compounds, primarily mono- and sesquiterpenoids, which are produced and stored in pigment glands. In this study, we provide a comprehensive evaluation of the terpene profiles of wild G. hirsutum plants sourced from sites located throughout natural distribution of this species, thus providing the first in-depth assessment of the scope of its intraspecific chemotypic diversity. Chemotypic variation can potentially influence resistance to herbivory and diseases, or interact with abiotic stress such as extreme temperatures. Under controlled environmental conditions, plants were grown from seeds of sixteen G. hirsutum populations collected along the coastline of the Yucatan Peninsula, which is its likely centre of origin. We found high levels of intraspecific diversity in the terpene profiles of the plants. Two distinct chemotypes were identified: one chemotype contained higher levels of the monoterpenes γ-terpinene, limonene, α-thujene, α-terpinene, terpinolene, and p-cymene, while the other chemotype was distinguished by higher levels of α- and ß-pinene. The distribution of chemotypes followed a geographic gradient from west to east, with an increasing frequency of the former chemotype. Concurrent analysis of maternal plants revealed that chemotypes in wild G. hirsutum are highly heritable.


Subject(s)
Gossypium , Terpenes , Gossypium/genetics
2.
Insects ; 13(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35206776

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond.

3.
Sci Rep ; 10(1): 8257, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427834

ABSTRACT

Natural enemies of herbivores are expected to adapt to the defence strategies of their preys or hosts. Such adaptations may also include their capacity to cope with plant metabolites that herbivores sequester as a defence. In this study, we evaluated the ability of Mexican entomopathogenic nematodes (EPN) to resist benzoxazinoids that are sequestered from maize roots by the western corn rootworm (WCR, Diabrotica virgifera virgifera; Coleoptera: Chrysomelidae), an important maize pest in America and Europe. From maize fields throughout Mexico, we retrieved 40 EPN isolates belonging to five different species, with a majority identified as Heterorhabditis bacteriophora. In the laboratory, all nematodes readily infected non-sequestering larvae of the banded cucumber beetle (D. balteata), while infectivity varied strongly for WCR larvae. While some H. bacteriophora isolates seemed negatively affected by benzoxazinoids, most showed to be resistant. Thus, EPN from Mexican maize fields can cope with these plant defence metabolites, but the results also indicate that WCR larvae possess other mechanisms that help to resist EPN. This work contributes to a better understanding of the capacity of herbivore natural enemies to resist plant defence metabolites. Furthermore, it identifies several benzoxazinoid-resistant EPN isolates that may be used to control this important maize pest.


Subject(s)
Benzoxazines/pharmacology , Coleoptera/drug effects , Coleoptera/parasitology , Insecticide Resistance , Insecticides/pharmacology , Nematoda/physiology , Plant Diseases/parasitology , Zea mays/parasitology , Animals , Coleoptera/physiology , Herbivory/drug effects , Herbivory/physiology , Larva/drug effects , Larva/parasitology , Larva/physiology , Mexico , Pest Control, Biological
4.
Am J Bot ; 106(8): 1059-1067, 2019 08.
Article in English | MEDLINE | ID: mdl-31322738

ABSTRACT

PREMISE: The occurrence and amount of herbivory are shaped by bottom-up forces, primarily plant traits (e.g., defenses), and by abiotic factors. Addressing these concurrent effects in a spatial context has been useful in efforts to understand the mechanisms governing variation in plant-herbivore interactions. Still, few studies have evaluated the simultaneous influence of multiple sources of bottom-up variation on spatial variation in herbivory. METHODS: We tested to what extent chemical (phenolics, production of terpenoid glands) and physical (pubescence) defensive plant traits and climatic factors are associated with variation in herbivory by leaf-chewing insects across populations of wild cotton (Gossypium hirsutum). RESULTS: We found substantial population variation in cotton leaf defenses and insect leaf herbivory. Leaf pubescence, but not gossypol gland density or phenolic content, was significantly negatively associated with herbivory by leaf-chewing insects. In addition, there were direct effects of climate on defenses and herbivory, with leaf pubescence increasing toward drier conditions and leaf damage increasing toward wetter and cooler conditions. There was no evidence, however, of indirect effects (via plant defenses) of climate on herbivory. CONCLUSIONS: These results suggest that spatial variation in insect herbivory on wild G. hirsutum is predominantly driven by concurrent and independent influences of population variation in leaf pubescence and climatic factors.


Subject(s)
Gossypium , Herbivory , Animals , Climate , Insecta , Phenotype , Plant Leaves
5.
Int J Syst Evol Microbiol ; 69(3): 652-661, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30688647

ABSTRACT

Two Gram-negative, rod-shaped, non-spore-forming bacteria, MEX20-17T and MEX47-22T, were isolated from the digestive system of Heterorhabditis atacamensis and Heterorhabditis mexicana entomopathogenic nematodes, respectively. Their 16S rRNA gene sequences suggest that strains MEX20-17T and MEX47-22T belong to the γ-Proteobacteria and to the genus Photorhabdus. Deeper analyses using housekeeping-gene-based and whole-genome-based phylogenetic reconstruction suggest that MEX20-17T is closely related to Photorhabdus khanii and that MEX47-22T is closely related to Photorhabdus luminescens. Sequence similarity scores confirm these observations: MEX20-17T and P. khanii DSM 3369T share 98.9 % nucleotide sequence identity (NSI) of concatenated housekeeping genes, 70.4 % in silico DNA-DNA hybridization (isDDH) and 97 % orthologous average nucleotide identity (orthoANI); and MEX47-22T and P. luminescens ATCC 29999T share 98.9 % NSI, 70.6 % isDDH and 97 % orthoANI. Physiological characterization indicates that both strains differ from all validly described Photorhabdus species and from their more closely related taxa. We therefore propose to classify MEX20-17T and MEXT47-22T as new subspecies within P. khanii and P. luminescens, respectively. Hence, the following names are proposed for these strains: Photorhabdus khanii subsp. guanajuatensis subsp. nov. with the type strain MEX20-17T (=LMG 30372T=CCOS 1191T) and Photorhabdus luminescenssubsp. mexicana subsp. nov. with the type strain MEX47-22T (=LMG 30528T=CCOS 1199T). These propositions automatically create Photorhabdus khanii subsp. khanii subsp. nov. with DSM 3369T as the type strain (currently classified as P. khanii), and Photorhabdus luminescenssubsp. luminescenssubsp. nov. with ATCC 29999T as the type strain (currently classified as P. luminescens).


Subject(s)
Photorhabdus/classification , Phylogeny , Rhabditoidea/microbiology , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Mexico , Nucleic Acid Hybridization , Photorhabdus/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil
6.
Phytochemistry ; 72(14-15): 1838-47, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21658734

ABSTRACT

Maize plants respond to feeding by arthropod herbivores by producing a number of secondary plant compounds, including volatile organic compounds (VOCs). These herbivore-induced VOCs are not only known to attract natural enemies of the herbivores, but they may also prime inducible defences in neighbouring plants, resulting in stronger and faster defence responses in these VOC-exposed plants. Among the compounds that cause this priming effect, green leaf volatiles (GLVs) have received particular attention, as they are ubiquitous and rapidly emitted upon damage. In this study, we investigated their effects under realistic conditions by applying specially devised dispensers to release four synthetic GLVs at physiologically relevant concentrations in a series of experiments in maize fields. We compared the VOC emission of GLV-exposed maize plants to non-exposed plants and monitored the attraction of herbivores and predators, as well as parasitism of the caterpillar Spodoptera frugiperda, the most common herbivore in the experimental maize fields. We found that maize plants that were exposed to GLVs emitted increased quantities of sesquiterpenes compared to non-exposed plants. In several replicates, herbivorous insects, such as adult Diabrotica beetles and S. frugiperda larvae, were observed more frequently in GLV-treated plots and caused more damage to GLV-exposed plants than to non-exposed plants. Parasitism of S. frugiperda was only weakly affected by GLVs and overall parasitism rates of S. frugiperda were similar in GLV-exposed and non-exposed plots. The effects on insect presence depended on the distance from the GLV-dispensers at which the plants were located. The results are discussed in the context of strategies to improve biological control by enhancing plant-mediated attraction of natural enemies.


Subject(s)
Coleoptera/drug effects , Oils, Volatile/pharmacology , Pest Control, Biological/methods , Sesquiterpenes/metabolism , Spodoptera/drug effects , Zea mays/drug effects , Animals , Coleoptera/physiology , Herbivory/drug effects , Mexico , Oils, Volatile/chemistry , Plant Diseases/parasitology , Plant Leaves/chemistry , Spodoptera/physiology , Volatilization , Zea mays/chemistry , Zea mays/parasitology , Zea mays/physiology
7.
Planta ; 234(1): 207-15, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21509694

ABSTRACT

Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant's signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.


Subject(s)
Oils, Volatile/metabolism , Spodoptera/physiology , Zea mays/parasitology , Animals , Brazil , Host-Parasite Interactions , Oviposition , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL