Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Endocrinol Invest ; 45(3): 527-535, 2022 Mar.
Article En | MEDLINE | ID: mdl-34550535

AIMS: The aim of the study was to determine how the administration of a high-fat diet supplemented with various forms of chromium to rats affects accumulation of this element in the tissues and levels of leptin, ghrelin, insulin, glucagon, serotonin, noradrenaline and histamine, as well as selected mineral elements. METHODS: The experiment was conducted on 56 male Wistar rats, which were divided into 8 experimental groups. The rats received standard diet or high fat diet (HFD) with addition of 0.3 mg/kg body weight of chromium(III) picolinate (Cr-Pic), chromium(III)-methioninate (Cr-Met), or chromium nanoparticles (Cr-NP). RESULTS: Chromium in organic forms was found to be better retained in the body of rats than Cr in nanoparticles form. However, Cr-Pic was the only form that increased the insulin level, which indicates its beneficial effect on carbohydrate metabolism. In blood plasma of rats fed a high-fat diet noted an increased level of serotonin and a reduced level of noradrenaline. The addition of Cr to the diet, irrespective of its form, also increased the serotonin level, which should be considered a beneficial effect. Rats fed a high-fat diet had an unfavourable reduction in the plasma concentrations of Ca, P, Mg and Zn. The reduction of P in the plasma induced by supplementation with Cr in the form of Cr-Pic or Cr-NP may exacerbate the adverse effect of a high-fat diet on the level of this element. CONCLUSION: A high-fat diet was shown to negatively affect the level of hormones regulating carbohydrate metabolism (increasing leptin levels and decreasing levels of ghrelin and insulin).


Carbohydrate Metabolism/physiology , Chromium , Diet, High-Fat , Ghrelin/blood , Leptin/blood , Serotonin/blood , Animals , Chromium/administration & dosage , Chromium/metabolism , Chromium/pharmacokinetics , Diet, High-Fat/adverse effects , Diet, High-Fat/methods , Dietary Supplements , Glucagon/metabolism , Insulin/blood , Norepinephrine/blood , Rats , Tissue Distribution , Trace Elements/blood , Trace Elements/classification
2.
Animal ; 13(6): 1137-1144, 2019 Jun.
Article En | MEDLINE | ID: mdl-30378527

The hypothesis of the research was the assumption, that manganese nanoparticles can affect the body in the same way as macromolecules. Their smaller size and greater biological reactivity will potentially allow the Mn addition to the diet to be reduced and, consequently, less excretion of this element into the environment. The aim of the study was to determine whether the use of Mn nanoparticles would make it possible to reduce the level of this micronutrient added to turkey diets without adversely affecting redox reactions in cells and epigenetic changes. The experiment was conducted on six groups with 10 replications, in a two-factor design with three dosages of manganese: 100, 50 and 10 mg/kg, and two sources: manganese oxide (MnO) and manganese nanoparticles (NP-Mn2O3). Markers of oxidative stress determined in the blood, that is, the concentration of lipid hydroperoxides, malondialdehyde, protein carbonyl derivatives, 3-nitrotyrosine, 8-hydroxydeoxyguanosine, total glutathione, superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin, total antioxidant status, albumin and vitamin C content. The level of epigenetic changes in the blood was determined by analysing global DNA methylation. In the experiment, in which the diet of turkeys was supplemented with two forms of Mn (MnO or NP-Mn2O3) at three dosages: 100, 50 and 10 mg/kg, the 10 mg/kg dose, especially in the form of NP-Mn2O3, induced lipid oxidation reactions to the greatest extent. Irrespective of the dosage of Mn in the turkey diet, Mn in the form of NP-Mn2O3 was found to reduce protein nitration more than Mn in the form of MnO. Reducing the Mn dosage in the diet from 100 to 50 mg/kg and then to 10 mg/kg is unfavourable because proportionally increases protein and DNA oxidation in cells, decreases the activity of antioxidant enzymes, and increases the level of glutathione. Reducing the dosage from 100 to 10 mg/kg increases global DNA methylation. The reduction of the Mn level, regardless of the form used, is disadvantageous, because it weakens the defense of the antioxidant system, which consequently can induce oxidative processes in the cells. Although Mn in the form of NP-Mn2O3 reduce protein nitration better than in MnO form, the use of manganese nanoparticles in turkey feeding (even in lower doses) requires further study.


Diet/veterinary , Epigenesis, Genetic , Manganese Compounds/pharmacology , Manganese/pharmacology , Metal Nanoparticles/chemistry , Oxides/pharmacology , Turkeys , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/metabolism , Biomarkers , Dietary Supplements , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Glutathione Peroxidase/metabolism , Malondialdehyde/metabolism , Manganese/administration & dosage , Manganese/chemistry , Manganese Compounds/administration & dosage , Manganese Compounds/chemistry , Oxidation-Reduction , Oxidative Stress/drug effects , Oxides/administration & dosage , Oxides/chemistry , Superoxide Dismutase/metabolism
...