Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
IBRO Neurosci Rep ; 14: 210-234, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36880056

ABSTRACT

Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.

2.
Nat Prod Bioprospect ; 12(1): 34, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35996065

ABSTRACT

Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.

3.
Front Physiol ; 8: 627, 2017.
Article in English | MEDLINE | ID: mdl-28928669

ABSTRACT

Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them.

4.
Int J Dev Biol ; 50(4): 405-12, 2006.
Article in English | MEDLINE | ID: mdl-16525936

ABSTRACT

Dynamic changes in the surface architecture pattern of embryos of the slipper limpet (Crepidula fornicata, Mollusca) were found in this study to correlate with the dynamic activity and pattern of the underlying mitotic spindle microtubule network, revealed by fluorescent labelling and confocal imaging techniques. Examination of a series of optical sections indicate that this network appears to be spatially co-ordinated together as a whole throughout the embryo. The microtubule pattern also associated with abnormal multipolar spindles resulting from an applied static magnetic field, indicating that the pattern may be generated by a natural endogenous field source. The patterning characteristics of the surface and microtubule network together provide further morphological evidence for a primary morphogenetic or developmental field system which organises the primary body axis and co-ordinates the pattern of cleavage.


Subject(s)
Microtubules/physiology , Mollusca/physiology , Ovum/physiology , Animals , Cell Membrane/physiology , Cleavage Stage, Ovum/physiology , Embryo, Nonmammalian/physiology , Female , Magnetics , Male , Mollusca/embryology , Spindle Apparatus/physiology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL