Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 67(13): 11197-11208, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38950284

ABSTRACT

Tropomyosin receptor kinases (Trks) are receptor tyrosine kinases activated by neurotrophic factors, called neurotrophins. Among them, TrkA interacts with the nerve growth factor (NGF), which leads to pain induction. mRNA-display screening was carried out to discover a hit compound 2, which inhibits protein-protein interactions between TrkA and NGF. Subsequent structure optimization improving phosphorylation inhibitory activity and serum stability was pursued using a unique process that took advantage of the peptide being synthesized by translation from mRNA. This gave peptide 19, which showed an analgesic effect in a rat incisional pain model. The peptides described here can serve as a new class of analgesics, and the structure optimization methods reported provide a strategy for discovering new peptide drugs.


Subject(s)
Receptor, trkA , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism , Animals , Rats , Humans , Structure-Activity Relationship , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Male , Nerve Growth Factor/metabolism , Phosphorylation , Pain/drug therapy , Rats, Sprague-Dawley
2.
ACS Med Chem Lett ; 14(11): 1558-1566, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37974946

ABSTRACT

Viral proteases, the key enzymes that regulate viral replication and assembly, are promising targets for antiviral drug discovery. Herpesvirus proteases are enzymes with no crystallographically confirmed noncovalent active-site binders, owing to their shallow and polar substrate-binding pockets. Here, we applied our previously reported "Peptide-to-Small Molecule" strategy to generate novel inhibitors of ß-herpesvirus proteases. Rapid selection with a display technology was used to identify macrocyclic peptide 1 bound to the active site of human cytomegalovirus protease (HCMVPro) with high affinity, and pharmacophore queries were defined based on the results of subsequent intermolecular interaction analyses. Membrane-permeable small molecule 19, designed de novo according to this hypothesis, exhibited enzyme inhibitory activity (IC50 = 10-6 to 10-7 M) against ß-herpesvirus proteases, and the design concept was proved by X-ray cocrystal analysis.

3.
ACS Med Chem Lett ; 12(7): 1093-1101, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34267879

ABSTRACT

Nicotinamide N-methyltransferase (NNMT), which catalyzes the methylation of nicotinamide, is a cytosolic enzyme that has attracted much attention as a therapeutic target for a variety of diseases. However, despite the considerable interest in this target, reports of NNMT inhibitors have still been limited to date. In this work, utilizing in vitro translated macrocyclic peptide libraries, we identified peptide 1 as a novel class of NNMT inhibitors. Further exploration based on the X-ray cocrystal structures of the peptides with NNMT provided a dramatic improvement in inhibitory activity (peptide 23: IC50 = 0.15 nM). Furthermore, by balance of the peptides' lipophilicity and biological activity, inhibitory activity against NNMT in cell-based assay was successfully achieved (peptide 26: cell-based IC50 = 770 nM). These findings illuminate the potential of cyclic peptides as a relatively new drug discovery modality even for intracellular targets.

4.
J Med Chem ; 63(11): 6090-6095, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32378891

ABSTRACT

A novel lipopeptide antibiotic, stalobacin I (1), was discovered from a culture broth of an unidentified Gram-negative bacterium. Stalobacin I (1) had a unique chemical architecture composed of an upper and a lower half peptide sequence, which were linked via a hemiaminal methylene moiety. The sequence of 1 contained an unusual amino acid, carnosadine, 3,4-dihydroxyariginine, 3-hydroxyisoleucine, and 3-hydroxyaspartic acid, and a novel cyclopropyl fatty acid. The antibacterial activity of 1 against a broad range of drug-resistant Gram-positive bacteria was much stronger than those of "last resort" antibiotics such as vancomycin, linezolid, and telavancin (MIC 0.004-0.016 µg/mL). Furthermore, compound 1 induced a characteristic morphological change in Gram-positive and Gram-negative strains by inflating the bacterial cell body. The absolute configuration of a cyclopropyl amino acid, carnosadine, was determined by the synthetic study of its stereoisomers, which was an essential component for the strong activity of 1.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Lipopeptides/chemistry , Aminoglycosides/pharmacology , Anti-Bacterial Agents/chemistry , Drug Evaluation, Preclinical , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lipoglycopeptides/pharmacology , Lipopeptides/pharmacology , Microbial Sensitivity Tests
5.
Bioorg Med Chem Lett ; 20(15): 4631-4, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20576431

ABSTRACT

Exendin-4, a glucagon-like peptide 1 receptor agonist, is a potent therapeutic xenopeptide hormone for the treatment of type 2 diabetes. In order to further improve in vivo activity, we examined the introduction of sialyl N-acetyllactosamine (sialyl LacNAc) to exendin-4. The glycosylated analogue having sialyl LacNAc at position 28 was found to have improved in vivo activity with prolonged glucose-lowering activity.


Subject(s)
Blood Glucose/metabolism , Hypoglycemic Agents/chemistry , Peptides/chemistry , Venoms/chemistry , Amino Acid Sequence , Animals , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Exenatide , Glucagon-Like Peptide 1/antagonists & inhibitors , Glucagon-Like Peptide 1/metabolism , Glycosylation , Hypoglycemic Agents/therapeutic use , Mice , Molecular Sequence Data , Peptides/therapeutic use , Venoms/therapeutic use
6.
J Am Chem Soc ; 131(17): 6237-45, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19361194

ABSTRACT

Glucagon-like peptide 1 (7-36) amide (GLP-1) has been attracting considerable attention as a therapeutic agent for the treatment of type 2 diabetes. In this study, we applied a glycoengineering strategy to GLP-1 to improve its proteolytic stability and in vivo blood glucose-lowering activity. Glycosylated analogues with N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and alpha2,6-sialyl N-acetyllactosamine (sialyl LacNAc) were prepared by chemoenzymatic approaches. We assessed the receptor binding affinity and cAMP production activity in vitro, the proteolytic resistance against dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase (NEP) 24.11, and the blood glucose-lowering activity in diabetic db/db mice. Addition of sialyl LacNAc to GLP-1 greatly improved stability against DPP-IV and NEP 24.11 as compared to the native type. Also, the sialyl LacNAc moiety extended the blood glucose-lowering activity in vivo. Kinetic analysis of the degradation reactions suggested that the sialic acid component played an important role in decreasing the affinity of peptide to DPP-IV. In addition, the stability of GLP-1 against both DPP-IV and NEP24.11 incrementally improved with an increase in the content of sialyl LacNAc in the peptide. The di- and triglycosylated analogues with sialyl LacNAc showed greatly prolonged blood glucose-lowering activity of up to 5 h after administration (100 nmol/kg), although native GLP-1 showed only a brief duration. This study is the first attempt to thoroughly examine the effect of glycosylation on proteolytic resistance by using synthetic glycopeptides having homogeneous glycoforms. This information should be useful for the design of glycosylated analogues of other bioactive peptides as desirable pharmaceuticals.


Subject(s)
Blood Glucose/metabolism , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Protein Processing, Post-Translational , Protein Stability , Animals , Carbohydrate Conformation , Carbohydrate Sequence , Diabetes Mellitus, Experimental , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Disease Models, Animal , Glycosylation , Mice , Mice, Obese , Molecular Sequence Data , Neprilysin/chemistry , Neprilysin/metabolism , Time Factors
8.
Org Lett ; 6(11): 1753-6, 2004 May 27.
Article in English | MEDLINE | ID: mdl-15151406

ABSTRACT

4-Fluorinated UDP-MurNAc pentapeptide, 2, has been synthesized. In our previous study, UDP-MurNAc pentapeptide analogue 1 was found to be incorporated into the bacterial cell wall through biosynthesis. Compound 2 showed growth-inhibition activity against Gram-positive bacteria when it was added to growth media at 0.01 mg/mL. [structure--see text]


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Anti-Bacterial Agents/chemistry , Cell Division/drug effects , Cell Wall/chemistry , Cell Wall/metabolism , Molecular Structure , Oligopeptides/chemistry
9.
J Am Chem Soc ; 126(12): 3755-61, 2004 Mar 31.
Article in English | MEDLINE | ID: mdl-15038728

ABSTRACT

UDP-MurNAc-pentapeptide derivative bacterial cell-wall precursors were synthesized as effective tools for surface display on living bacteria. Lactobacilli were incubated in the ketone-modified precursor-containing medium, and the ketone moiety was displayed on the bacterial surface through cell-wall biosynthesis. Oligomannose was coupled with the ketone moiety on the bacterial surface via a aminooxyl linker, thereby displaying this oligosaccharide on the surface of the bacteria. The increase in the adhesion of the sugar-displaying bacteria onto a concanavalin A-attached film compared to that of native bacteria was confirmed by microscopic observation and surface plasmon resonance measurement. The incorporation of the artificial cell-wall precursors was enhanced when incubated with fosfomycin, an inhibitor of cell-wall precursor biosynthesis.


Subject(s)
Bacterial Adhesion , Cell Wall/metabolism , Lactobacillus/metabolism , Oligosaccharides/biosynthesis , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Anti-Bacterial Agents/pharmacology , Concanavalin A/pharmacology , Fosfomycin/pharmacology , Molecular Structure , Surface Plasmon Resonance , Uridine Diphosphate N-Acetylmuramic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL