Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
ArXiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38800652

ABSTRACT

Proteins congregate into complexes to perform fundamental cellular functions. Phenotypic outcomes, in health and disease, are often mechanistically driven by the remodeling of protein complexes by protein-coding mutations or cellular signaling changes in response to molecular cues. Here, we present an affinity purification-mass spectrometry (APMS) proteomics protocol to quantify and visualize global changes in protein-protein interaction (PPI) networks between pairwise conditions. We describe steps for expressing affinity-tagged "bait" proteins in mammalian cells, identifying purified protein complexes, quantifying differential PPIs, and visualizing differential PPI networks. Specifically, this protocol details steps for designing affinity-tagged "bait" gene constructs, transfection, affinity purification, mass spectrometry sample preparation, data acquisition, database search, data quality control, PPI confidence scoring, cross-run normalization, statistical data analysis, and differential PPI visualization. Our protocol discusses caveats and limitations with applicability across cell types and biological areas. For complete details on the use and execution of this protocol, please refer to Bouhaddou et al. 20231.

2.
Cell ; 186(21): 4597-4614.e26, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37738970

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/virology , Immunity, Innate/genetics , Pandemics , SARS-CoV-2/genetics
3.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37738983

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins , Humans , COVID-19/virology , Immunity, Innate , Interferons/genetics , Interferons/metabolism , SARS-CoV-2/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
4.
bioRxiv ; 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36299428

ABSTRACT

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

6.
Nature ; 602(7897): 487-495, 2022 02.
Article in English | MEDLINE | ID: mdl-34942634

ABSTRACT

The emergence of SARS-CoV-2 variants of concern suggests viral adaptation to enhance human-to-human transmission1,2. Although much effort has focused on the characterization of changes in the spike protein in variants of concern, mutations outside of spike are likely to contribute to adaptation. Here, using unbiased abundance proteomics, phosphoproteomics, RNA sequencing and viral replication assays, we show that isolates of the Alpha (B.1.1.7) variant3 suppress innate immune responses in airway epithelial cells more effectively than first-wave isolates. We found that the Alpha variant has markedly increased subgenomic RNA and protein levels of the nucleocapsid protein (N), Orf9b and Orf6-all known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein that is required for activation of the RNA-sensing adaptor MAVS. Moreover, the activity of Orf9b and its association with TOM70 was regulated by phosphorylation. We propose that more effective innate immune suppression, through enhanced expression of specific viral antagonist proteins, increases the likelihood of successful transmission of the Alpha variant, and may increase in vivo replication and duration of infection4. The importance of mutations outside the spike coding region in the adaptation of SARS-CoV-2 to humans is underscored by the observation that similar mutations exist in the N and Orf9b regulatory regions of the Delta and Omicron variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , Evolution, Molecular , Immune Evasion , Immunity, Innate/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/transmission , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Immunity, Innate/genetics , Interferons/immunology , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Proteomics , RNA, Viral/genetics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/growth & development
7.
bioRxiv ; 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34127972

ABSTRACT

Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.

8.
Science ; 370(6521)2020 12 04.
Article in English | MEDLINE | ID: mdl-33060197

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a grave threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analyses for all three viruses. Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-CoV-2 ORF9b, an interaction we structurally characterized using cryo-electron microscopy. Combining genetically validated host factors with both COVID-19 patient genetic data and medical billing records identified molecular mechanisms and potential drug treatments that merit further molecular and clinical study.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Host Microbial Interactions , Mitochondrial Membrane Transport Proteins/metabolism , Protein Interaction Maps , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Conserved Sequence , Coronavirus Nucleocapsid Proteins/genetics , Cryoelectron Microscopy , Humans , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL