Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 28(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770879

ABSTRACT

The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Mass Spectrometry/methods , Water/analysis , Hospitals , Environmental Monitoring/methods
2.
Mar Environ Res ; 176: 105605, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35316651

ABSTRACT

In an attempt to ensure that bioplastics, progressively replacing petrochemical-derived plastics, do not release any harmful compound to the environment, the study assessed the toxic effects of three innovative bioplastic products: polyhydroxybutyrate resin (PHB), polylactic acid cups (PLA) and a polylactic acid/polyhydroxyalkanoate 3D printing filament (PLA/PHA), together with a synthetic polyvinyl chloride (PVC) toy in Paracentrotus lividus sea urchin larvae. PVC toy was the most toxic material, likely due to the added plasticizers; remarkably, even if PHB is conceived as a nontoxic polymer, it showed a slight toxicity and Gas Chromatography-Mass Spectometry analysis (GC-MS) revealed the presence of a wide range of additives. Conversely, PLA cups and PLA/PHA filament were innocuous for the larvae, a positive outcome for these renewable solutions. Proven that additives are also used in some bioplastic formulations, they should be carefully addressed to ensure that they are as safe as regarded.


Subject(s)
Paracentrotus , Water Pollutants, Chemical , Animals , Larva , Polyesters/toxicity , Polyvinyl Chloride/pharmacology , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL