Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 658: 124176, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38688427

ABSTRACT

The aim of this study was to evaluate the enhanced thermal stability and physicochemical properties of fattigated vaccine antigens. High molecular weight influenza hemagglutinin (Heg) was used as a model antigen because of low heat stability requiring cold chamber. Heg was conjugated with long-chain oleic acid (C18) and short-chain 3-decenoic acid (C10) to prepare fattigated Heg. Circular dichroism analysis revealed no significant changes in the three-dimensional structure post-conjugation. In the liquid state, the fattigated Heg was self-assembled into nanoparticles (NPs) due to its amphiphilic nature, with sizes of 136.27 ± 12.78 nm for oleic acid-conjugated Heg (HOC) and 88.73 ± 3.27 nm for 3-decenoic acid-conjugated Heg (HDC). Accelerated thermal stability studies at 60 °C for 7 days demonstrated that fattigated Heg exhibited higher thermal stability than Heg in various liquid or solid states. The longer-chained HOC showed better thermal stability than HDC in the liquid state, attributed to increased hydrophobic interactions during self-assembly. In bio-mimicking liquid states at 37 °C, HOC exhibited higher thermal stability than Heg. Furthermore, solid-state HOC with cryoprotectants (trehalose, mannitol, and Tween® 80) had significantly increased thermal stability due to reduced exposure of protein surface area via nanonization behavior. The current fattigation platform could be a promising strategy for developing thermostable nano vaccines of heat-labile vaccine antigens.


Subject(s)
Drug Stability , Hemagglutinin Glycoproteins, Influenza Virus , Nanoparticles , Nanoparticles/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/administration & dosage , Oleic Acid/chemistry , Vaccines, Conjugate/chemistry , Fatty Acids/chemistry , Hot Temperature , Particle Size , Polysorbates/chemistry , Hydrophobic and Hydrophilic Interactions , Fatty Acids, Monounsaturated/chemistry , Antigens/chemistry , Antigens/immunology
SELECTION OF CITATIONS
SEARCH DETAIL