Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653778

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
2.
Bioinformatics ; 40(3)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38426335

SUMMARY: With the increasing rates of exome and whole genome sequencing, the ability to classify large sets of germline sequencing variants using up-to-date American College of Medical Genetics-Association for Molecular Pathology (ACMG-AMP) criteria is crucial. Here, we present Automated Germline Variant Pathogenicity (AutoGVP), a tool that integrates germline variant pathogenicity annotations from ClinVar and sequence variant classifications from a modified version of InterVar (PVS1 strength adjustments, removal of PP5/BP6). This tool facilitates large-scale, clinically focused classification of germline sequence variants in a research setting. AVAILABILITY AND IMPLEMENTATION: AutoGVP is an open source dockerized workflow implemented in R and freely available on GitHub at https://github.com/diskin-lab-chop/AutoGVP.


Genetic Variation , Genomics , Humans , Workflow , Virulence , Software , Germ Cells , Genetic Testing
3.
J Natl Cancer Inst ; 116(1): 138-148, 2024 01 10.
Article En | MEDLINE | ID: mdl-37688570

BACKGROUND: High-risk neuroblastoma is a complex genetic disease that is lethal in more than 50% of patients despite intense multimodal therapy. Through genome-wide association studies (GWAS) and next-generation sequencing, we have identified common single nucleotide polymorphisms and rare, pathogenic or likely pathogenic germline loss-of-function variants in BARD1 enriched in neuroblastoma patients. The functional implications of these findings remain poorly understood. METHODS: We correlated BARD1 genotype with expression in normal tissues and neuroblastomas, along with the burden of DNA damage in tumors. To validate the functional consequences of germline pathogenic or likely pathogenic BARD1 variants, we used CRISPR-Cas9 to generate isogenic neuroblastoma (IMR-5) and control (RPE1) cellular models harboring heterozygous BARD1 loss-of-function variants (R112*, R150*, E287fs, and Q564*) and quantified genomic instability in these cells via next-generation sequencing and with functional assays measuring the efficiency of DNA repair. RESULTS: Both common and rare neuroblastoma-associated BARD1 germline variants were associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using isogenic heterozygous BARD1 loss-of-function variant cellular models, we functionally validated this association with inefficient DNA repair. BARD1 loss-of-function variant isogenic cells exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA double-strand break sites, and enhanced sensitivity to cisplatin and poly (ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. CONCLUSIONS: Taken together, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications.


Neuroblastoma , Tumor Suppressor Proteins , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Genome-Wide Association Study , Haploinsufficiency , Ubiquitin-Protein Ligases/genetics , BRCA1 Protein/genetics , DNA Repair/genetics , Neuroblastoma/pathology
4.
J Natl Cancer Inst ; 116(1): 149-159, 2024 01 10.
Article En | MEDLINE | ID: mdl-37688579

BACKGROUND: Neuroblastoma is an embryonal cancer of the developing sympathetic nervous system. The genetic contribution of rare pathogenic or likely pathogenic germline variants in patients without a family history remains unclear. METHODS: Germline DNA sequencing was performed on 786 neuroblastoma patients. The frequency of rare cancer predisposition gene pathogenic or likely pathogenic variants in patients was compared with 2 cancer-free control cohorts. Matched tumor DNA sequencing was evaluated for second hits, and germline DNA array data from 5585 neuroblastoma patients and 23 505 cancer-free control children were analyzed to identify rare germline copy number variants. Patients with germline pathogenic or likely pathogenic variants were compared with those without to test for association with clinical characteristics, tumor features, and survival. RESULTS: We observed 116 pathogenic or likely pathogenic variants involving 13.9% (109 of 786) of neuroblastoma patients, representing a statistically significant excess burden compared with cancer-free participants (odds ratio [OR] = 1.60, 95% confidence interval [CI] = 1.27 to 2.00). BARD1 harbored the most statistically significant enrichment of pathogenic or likely pathogenic variants (OR = 32.30, 95% CI = 6.44 to 310.35). Rare germline copy number variants disrupting BARD1 were identified in patients but absent in cancer-free participants (OR = 29.47, 95% CI = 1.52 to 570.70). Patients harboring a germline pathogenic or likely pathogenic variant had a worse overall survival compared with those without (P = 8.6 x 10-3). CONCLUSIONS: BARD1 is an important neuroblastoma predisposition gene harboring both common and rare germline pathogenic or likely pathogenic variations. The presence of any germline pathogenic or likely pathogenic variant in a cancer predisposition gene was independently predictive of worse overall survival. As centers move toward paired tumor-normal sequencing at diagnosis, efforts should be made to centralize data and provide an infrastructure to support cooperative longitudinal prospective studies of germline pathogenic variation.


Genetic Predisposition to Disease , Neuroblastoma , Child , Humans , Prospective Studies , BRCA1 Protein/genetics , Germ-Line Mutation , Neuroblastoma/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics
5.
bioRxiv ; 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38076939

With the increasing rates of exome and whole genome sequencing, the ability to classify large sets of germline sequencing variants using up-to-date American College of Medical Genetics - Association for Molecular Pathology (ACMG-AMP) criteria is crucial. Here, we present Automated Germline Variant Pathogenicity (AutoGVP), a tool that integrates germline variant pathogenicity annotations from ClinVar and sequence variant classifications from a modified version of InterVar (PVS1 strength adjustments, removal of PP5/BP6). This tool facilitates large-scale, clinically-focused classification of germline sequence variants in a research setting.

6.
Cell Rep ; 42(8): 112879, 2023 08 29.
Article En | MEDLINE | ID: mdl-37537844

Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal auto-reactive B lymphocytes act as antigen-presenting cells and drive TLS formation, thereby supporting both sustained polyclonal T cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.


Neuroblastoma , Opsoclonus-Myoclonus Syndrome , Child , Humans , Autoimmunity , Neuroblastoma/complications , Neuroblastoma/metabolism , Opsoclonus-Myoclonus Syndrome/complications , Opsoclonus-Myoclonus Syndrome/pathology , Autoantibodies , Genes, MHC Class II , Ataxia
7.
Cell Genom ; 3(7): 100340, 2023 Jul 12.
Article En | MEDLINE | ID: mdl-37492101

Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.

8.
medRxiv ; 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36747619

Importance: Neuroblastoma accounts for 12% of childhood cancer deaths. The genetic contribution of rare pathogenic germline variation in patients without a family history remains unclear. Objective: To define the prevalence, spectrum, and clinical significance of pathogenic germline variation in cancer predisposition genes (CPGs) in neuroblastoma patients. Design Setting and Participants: Germline DNA sequencing was performed on the peripheral blood from 786 neuroblastoma patients unselected for family history. Rare variants mapping to CPGs were evaluated for pathogenicity and the percentage of cases harboring pathogenic (P) or likely pathogenic (LP) variants was quantified. The frequency of CPG P-LP variants in neuroblastoma cases was compared to two distinct cancer-free control cohorts to assess enrichment. Matched tumor DNA sequencing was evaluated for "second hits" at CPGs and germline DNA array data from 5,585 neuroblastoma cases and 23,505 cancer-free control children was analyzed to identify rare germline copy number variants (CNVs) affecting genes with an excess burden of P-LP variants in neuroblastoma. Neuroblastoma patients with germline P-LP variants were compared to those without P-LP variants to test for association with clinical characteristics, tumor features, and patient survival. Main Outcomes and Measures: Rare variant prevalence, pathogenicity, enrichment, and association with clinical characteristics, tumor features, and patient survival. Results: We observed 116 P-LP variants in CPGs involving 13.9% (109/786) of patients, representing a significant excess burden of P-LP variants compared to controls (9.1%; P = 5.14 × 10-5, Odds Ratio: 1.60, 95% confidence interval: 1.27-2.00). BARD1 harbored the most significant burden of P-LP variants compared to controls (1.0% vs. 0.03%; P = 8.18 × 10-7; Odds Ratio: 32.30, 95% confidence interval: 6.44-310.35). Rare germline CNVs disrupting BARD1 were also identified in neuroblastoma patients (0.05%) but absent in controls (P = 7.08 × 10-3; Odds Ratio: 29.47, 95% confidence interval: 1.52 - 570.70). Overall, P-LP variants in DNA repair genes in this study were enriched in cases compared to controls (8.1% vs. 5.7%; P = 0.01; Odds Ratio: 1.45, 95% confidence interval: 1.08-1.92). Neuroblastoma patients harboring a germline P-LP variant had a worse overall survival when compared to patients without P-LP variants (P = 8.6 × 10-3), and this remained significant in a multivariate Cox proportional-hazards model (P = 0.01). Conclusions and Relevance: Neuroblastoma patients harboring germline P-LP variants in CPGs have worse overall survival and BARD1 is an important predisposition gene affected by both common and rare pathogenic variation. Germline sequencing should be performed for all neuroblastoma patients at diagnosis to inform genetic counseling and support future longitudinal and mechanistic studies. Patients with a germline P-LP variant should be closely monitored, regardless of risk group assignment.

9.
bioRxiv ; 2023 Feb 03.
Article En | MEDLINE | ID: mdl-36778420

Importance: High-risk neuroblastoma is a complex genetic disease that is lethal in 50% of patients despite intense multimodal therapy. Our genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) within the BARD1 gene showing the most significant enrichment in neuroblastoma patients, and also discovered pathogenic (P) or likely pathogenic (LP) rare germline loss-of-function variants in this gene. The functional implications of these findings remain poorly understood. Objective: To define the functional relevance of BARD1 germline variation in children with neuroblastoma. Design: We correlated BARD1 genotype with BARD1 expression in normal and tumor cells and the cellular burden of DNA damage in tumors. To validate the functional consequences of rare germline P-LP BARD1 variants, we generated isogenic cellular models harboring heterozygous BARD1 loss-of-function (LOF) variants and conducted multiple complementary assays to measure the efficiency of DNA repair. Setting: (N/A). Participants: (N/A). Interventions/Exposures: (N/A). Main Outcomes and Measures: BARD1 expression, efficiency of DNA repair, and genome-wide burden of DNA damage in neuroblastoma tumors and cellular models harboring disease-associated BARD1 germline variants. Results: Both common and rare neuroblastoma associated BARD1 germline variants were significantly associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using neuroblastoma cellular models engineered to harbor disease-associated heterozygous BARD1 LOF variants, we functionally validated this association with inefficient DNA repair. These BARD1 LOF variant isogenic models exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA doublestrand break sites, and enhanced sensitivity to cisplatin and poly-ADP ribose polymerase (PARP) inhibition. Conclusions and Relevance: Considering that at least 1 in 10 children diagnosed with cancer carry a predicted pathogenic mutation in a cancer predisposition gene, it is critically important to understand their functional relevance. Here, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications, and these findings may also extend to other cancers harboring germline variants in genes essential for DNA damage repair. Key Points: Question: How do neuroblastoma patient BRCA1-associated RING domain 1 ( BARD1 ) germline variants impact DNA repair? Findings: Neuroblastoma-associated germline BARD1 variants disrupt DNA repair fidelity. Common risk variants correlate with decreased BARD1 expression and increased DNA double-strand breaks in neuroblastoma tumors and rare heterozygous loss-of-function variants induce BARD1 haploinsufficiency, resulting in defective DNA repair and genomic instability in neuroblastoma cellular models. Meaning: Germline variation in BARD1 contributes to neuroblastoma pathogenesis via dysregulation of critical cellular DNA repair functions, with implications for neuroblastoma treatment, risk stratification, and cancer predisposition.

10.
Neuro Oncol ; 25(7): 1331-1342, 2023 Jul 06.
Article En | MEDLINE | ID: mdl-36541551

BACKGROUND: To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS: We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS: ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS: We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.


Brain Neoplasms , Glioma , Humans , Child , DNA Mismatch Repair , Telomere Homeostasis/genetics , X-linked Nuclear Protein/genetics , Glioma/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Mutation , Telomere/genetics , Telomere/pathology
11.
Cancer Epidemiol Biomarkers Prev ; 31(4): 870-875, 2022 04 01.
Article En | MEDLINE | ID: mdl-35131881

BACKGROUND: Neuroblastoma is rarer in African American (AA) children compared with American children of European descent. AA children affected with neuroblastoma, however, more frequently develop the high-risk form of the disease. METHODS: We have genotyped an AA cohort of 629 neuroblastoma cases (254 high-risk) and 2,990 controls to investigate genetic susceptibility to neuroblastoma in AAs. RESULTS: We confirmed the known neuroblastoma susceptibility gene BARD1 at genome-wide significance in the subset of high-risk cases. We also estimated local admixture across the autosomal genome in the AA cases and controls and detected a signal at 4q31.22 where cases show an increase in European ancestry. A region at 17p13.1 showed increased African ancestry in the subgroup of high-risk cases with respect to intermediate- and low-risk cases. Using results from our published European American (EA) genome-wide association study (GWAS), we found that a polygenic score that included all independent SNPs showed a highly significant association (P value = 1.8 × 10-73) and explained 19% of disease risk variance in an independent EA cohort. In contrast, the best fit polygenic score (P value = 3.2 × 10-11) in AAs included only 22 independent SNPs with association P value < 2.75 × 10-6 in the EA GWAS, and explained 2% of neuroblastoma risk variance. The significance of the polygenic score dropped rapidly with inclusion of additional SNPs. CONCLUSIONS: These findings suggest that several common variants contribute to risk of neuroblastoma in an ancestry-specific fashion. IMPACT: This work supports the need for GWAS to be performed in populations of all races and ethnicities.


Black or African American , Neuroblastoma , Black or African American/genetics , Child , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Neuroblastoma/genetics , Polymorphism, Single Nucleotide
12.
Cancers (Basel) ; 13(8)2021 Apr 09.
Article En | MEDLINE | ID: mdl-33918978

Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.

13.
Acta Neuropathol Commun ; 8(1): 173, 2020 10 28.
Article En | MEDLINE | ID: mdl-33115534

Ependymoma is the third most common brain tumor in children, with well-described molecular characterization but poorly understood underlying germline risk factors. To investigate whether genetic predisposition to longer telomere length influences ependymoma risk, we utilized case-control data from three studies: a population-based pediatric and adolescent ependymoma case-control sample from California (153 cases, 696 controls), a hospital-based pediatric posterior fossa type A (EPN-PF-A) ependymoma case-control study from Toronto's Hospital for Sick Children and the Children's Hospital of Philadelphia (83 cases, 332 controls), and a multicenter adult-onset ependymoma case-control dataset nested within the Glioma International Case-Control Consortium (GICC) (103 cases, 3287 controls). In the California case-control sample, a polygenic score for longer telomere length was significantly associated with increased risk of ependymoma diagnosed at ages 12-19 (P = 4.0 × 10-3), but not with ependymoma in children under 12 years of age (P = 0.94). Mendelian randomization supported this observation, identifying a significant association between genetic predisposition to longer telomere length and increased risk of adolescent-onset ependymoma (ORPRS = 1.67; 95% CI 1.18-2.37; P = 3.97 × 10-3) and adult-onset ependymoma (PMR-Egger = 0.042), but not with risk of ependymoma diagnosed before age 12 (OR = 1.12; 95% CI 0.94-1.34; P = 0.21), nor with EPN-PF-A (PMR-Egger = 0.59). These findings complement emerging literature suggesting that augmented telomere maintenance is important in ependymoma pathogenesis and progression, and that longer telomere length is a risk factor for diverse nervous system malignancies.


Brain Neoplasms/genetics , Ependymoma/genetics , Telomere Homeostasis/genetics , Telomere/metabolism , Acid Anhydride Hydrolases/genetics , Adolescent , Adult , Age of Onset , Brain Neoplasms/epidemiology , Case-Control Studies , Child , DNA Helicases/genetics , Ependymoma/epidemiology , Female , Genetic Predisposition to Disease , Humans , Infratentorial Neoplasms/epidemiology , Infratentorial Neoplasms/genetics , Male , Mendelian Randomization Analysis , RNA/genetics , Ribonucleoproteins/genetics , Telomerase/genetics , Telomere-Binding Proteins/genetics , Young Adult
14.
Genome Res ; 30(9): 1228-1242, 2020 09.
Article En | MEDLINE | ID: mdl-32796005

Neuroblastoma is a malignancy of the developing sympathetic nervous system that accounts for 12% of childhood cancer deaths. Like many childhood cancers, neuroblastoma shows a relative paucity of somatic single-nucleotide variants (SNVs) and small insertions and deletions (indels) compared to adult cancers. Here, we assessed the contribution of somatic structural variation (SV) in neuroblastoma using a combination of whole-genome sequencing (WGS) of tumor-normal pairs (n = 135) and single-nucleotide polymorphism (SNP) genotyping of primary tumors (n = 914). Our study design allowed for orthogonal validation and replication across platforms. SV frequency, type, and localization varied significantly among high-risk tumors. MYCN nonamplified high-risk tumors harbored an increased SV burden overall, including a significant excess of tandem duplication events across the genome. Genes disrupted by SV breakpoints were enriched in neuronal lineages and associated with phenotypes such as autism spectrum disorder (ASD). The postsynaptic adapter protein-coding gene, SHANK2, located on Chromosome 11q13, was disrupted by SVs in 14% of MYCN nonamplified high-risk tumors based on WGS and 10% in the SNP array cohort. Expression of SHANK2 was low across human-derived neuroblastoma cell lines and high-risk neuroblastoma tumors. Forced expression of SHANK2 in neuroblastoma cells resulted in significant growth inhibition (P = 2.6 × 10-2 to 3.4 × 10-5) and accelerated neuronal differentiation following treatment with all-trans retinoic acid (P = 3.1 × 10-13 to 2.4 × 10-30). These data further define the complex landscape of somatic structural variation in neuroblastoma and suggest that events leading to deregulation of neurodevelopmental processes, such as inactivation of SHANK2, are key mediators of tumorigenesis in this childhood cancer.


Genes, Tumor Suppressor , Genomic Structural Variation , Nerve Tissue Proteins/genetics , Neuroblastoma/genetics , Neurogenesis/genetics , Cell Line, Tumor , Chromothripsis , Cohort Studies , DNA Breaks , DNA Copy Number Variations , Female , Humans , Male , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Neoplasm , RNA-Seq , Risk Assessment , Telomerase/genetics , Tumor Cells, Cultured , Whole Genome Sequencing
15.
Neuro Oncol ; 22(11): 1637-1646, 2020 11 26.
Article En | MEDLINE | ID: mdl-32607579

BACKGROUND: Ependymoma is a histologically defined central nervous system tumor most commonly occurring in childhood. Population-level incidence differences by race/ethnicity are observed, with individuals of European ancestry at highest risk. We aimed to determine whether extent of European genetic ancestry is associated with ependymoma risk in US populations. METHODS: In a multi-ethnic study of Californian children (327 cases, 1970 controls), we estimated the proportions of European, African, and Native American ancestry among recently admixed Hispanic and African American subjects and estimated European admixture among non-Hispanic white subjects using genome-wide data. We tested whether genome-wide ancestry differences were associated with ependymoma risk and performed admixture mapping to identify associations with local ancestry. We also evaluated race/ethnicity-stratified ependymoma incidence data from the Central Brain Tumor Registry of the United States (CBTRUS). RESULTS: CBTRUS data revealed that African American and Native American children have 33% and 36%, respectively, reduced incidence of ependymoma compared with non-Hispanic whites. In genetic analyses, a 20% increase in European ancestry was associated with a 1.31-fold higher odds of ependymoma among self-reported Hispanics and African Americans (95% CI: 1.08-1.59, Pmeta = 6.7 × 10-3). Additionally, eastern European ancestral substructure was associated with increased ependymoma risk in non-Hispanic whites (P = 0.030) and in Hispanics (P = 0.043). Admixture mapping revealed a peak at 20p13 associated with increased local European ancestry, and targeted fine-mapping identified a lead variant at rs6039499 near RSPO4 (odds ratio = 1.99; 95% CI: 1.45-2.73; P = 2.2 × 10-5) but which was not validated in an independent set of posterior fossa type A patients. CONCLUSIONS: Interethnic differences in ependymoma risk are recapitulated in the genomic ancestry of ependymoma patients, implicating regions to target in future association studies.


Ependymoma , Black or African American , Child , Ependymoma/epidemiology , Ependymoma/genetics , Female , Hispanic or Latino , Humans , Male , United States , White People/genetics
16.
J Natl Cancer Inst ; 112(12): 1259-1266, 2020 12 14.
Article En | MEDLINE | ID: mdl-32096864

BACKGROUND: Neuroblastoma is a childhood malignancy that arises from the developing sympathetic nervous system. Although mitochondrial dysfunctions have been implicated in the pathophysiology of neuroblastoma, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. METHODS: A total of 2404 Caucasian children diagnosed with neuroblastoma and 9310 ancestry-matched controls were recruited at the Children's Hospital of Philadelphia. The mtDNA haplogroups were identified from SNP array data of two independent cohorts. We conducted a case-control study to explore potential associations of mtDNA haplogroups with the susceptibility of neuroblastoma. The genetic effect of neuroblastoma was measured by odds ratios (ORs) of mitochondrial haplogroups. All tests were two-sided. RESULTS: Haplogroup K was statistically significantly associated with reduced risk of neuroblastoma in the discovery cohort consisting of 1474 cases and 5699 controls (OR = 0.72, 95% confidence interval [CI] = 0.57 to 0.90; P = 4.8 × 10-3). The association was replicated in an independent cohort (OR = 0.69, 95% CI = 0.53 to 0.92; P = .01) of 930 cases and 3611 controls. Pooled analysis was performed by combining the two data sets. The association remained highly statistically significant after correction for multiple testing (OR = 0.71, 95% CI = 0.59 to 0.84, P = 1.96 × 10-4, Pcorrected = .002). Further analysis focusing on neuroblastoma subtypes indicated haplogroup K was more associated with high-risk neuroblastoma (OR = 0.57, 95% CI = 0.43 to 0.76; P = 1.46 × 10-4) than low-risk and intermediate-risk neuroblastoma. CONCLUSIONS: Haplogroup K is an independent genetic factor associated with reduced risk of developing neuroblastoma in European descents. These findings provide new insights into the genetic basis of neuroblastoma, implicating mitochondrial DNA encoded proteins in the etiology of neuroblastoma.


DNA, Mitochondrial/genetics , Neuroblastoma/genetics , Polymorphism, Single Nucleotide , Age of Onset , Case-Control Studies , Cells, Cultured , Child , Cohort Studies , Datasets as Topic/statistics & numerical data , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Neuroblastoma/epidemiology
18.
Carcinogenesis ; 41(3): 284-295, 2020 05 14.
Article En | MEDLINE | ID: mdl-31605138

Neuroblastoma (NB) and malignant cutaneous melanoma (CMM) are neural crest cells (NCC)-derived tumors and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association studies (GWAS). We took a three-staged approach to conduct cross-disease meta-analysis of GWAS for NB and CMM (2101 NB cases and 4202 controls; 12 874 CMM cases and 23 203 controls) to identify shared loci. Findings were replicated in 1403 NB cases and 1403 controls of European ancestry and in 636 NB, 508 CMM cases and 2066 controls of Italian origin. We found a cross-association at locus 1p13.2 (rs2153977, odds ratio = 0.91, P = 5.36 × 10-8). We also detected a suggestive (P < 10-7) NB-CMM cross-association at 2q37.1 with opposite effect on cancer risk. Pathway analysis of 110 NB-CMM risk loci with P < 10-4 demonstrated enrichment of biological processes such as cell migration, cell cycle, metabolism and immune response, which are essential of human NCC development, underlying both tumors. In vitro and in silico analyses indicated that the rs2153977-T protective allele, located in an NB and CMM enhancer, decreased expression of SLC16A1 via long-range loop formation and altered a T-box protein binding site. Upon depletion of SLC16A1, we observed a decrease of cellular proliferation and invasion in both NB and CMM cell lines, suggesting its role as oncogene. This is the largest study to date examining pleiotropy across two NC cell-derived tumors identifying 1p13.2 as common susceptibility locus for NB and CMM risk. We demonstrate that combining genome-wide association studies results across cancers with same origins can identify new loci common to neuroblastoma and melanoma arising from tissues which originate from neural crest cells. Our results also show 1p13.2 confer risk to neuroblastoma and melanoma by regulating SLC16A1.


Adrenal Gland Neoplasms/genetics , Melanoma/genetics , Monocarboxylic Acid Transporters/genetics , Neuroblastoma/genetics , Skin Neoplasms/genetics , Symporters/genetics , Adrenal Gland Neoplasms/pathology , Cell Differentiation/genetics , Cell Movement/genetics , Chromosomes, Human, Pair 1/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Melanoma/pathology , Neural Crest/pathology , Neuroblastoma/pathology , Polymorphism, Single Nucleotide/genetics , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
19.
Cell Rep ; 29(6): 1675-1689.e9, 2019 11 05.
Article En | MEDLINE | ID: mdl-31693904

Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.


Central Nervous System Neoplasms/genetics , Neurofibromin 1/antagonists & inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Suppressor Protein p53/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Central Nervous System Neoplasms/metabolism , Child , Clinical Trials as Topic , Disease Models, Animal , Genomics , Humans , Mice , Mutation , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Osteosarcoma/genetics , Osteosarcoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Recurrence , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Exome Sequencing , Wilms Tumor/genetics , Wilms Tumor/metabolism
20.
Am J Hum Genet ; 105(3): 658-668, 2019 09 05.
Article En | MEDLINE | ID: mdl-31474320

Neuroblastoma is a cancer of the developing sympathetic nervous system. It is diagnosed in 600-700 children per year in the United States and accounts for 12% of pediatric cancer deaths. Despite recent advances in our understanding of this malignancy's complex genetic architecture, the contribution of rare germline variants remains undefined. Here, we conducted a genome-wide analysis of large (>500 kb), rare (<1%) germline copy number variants (CNVs) in two independent, multi-ethnic cohorts totaling 5,585 children with neuroblastoma and 23,505 cancer-free control children. We identified a 550-kb deletion on chromosome 16p11.2 significantly enriched in neuroblastoma cases (0.39% of cases and 0.03% of controls; p = 3.34 × 10-9). Notably, this CNV corresponds to a known microdeletion syndrome that affects approximately one in 3,000 children and confers risk for diverse developmental phenotypes including autism spectrum disorder and other neurodevelopmental disorders. The CNV had a substantial impact on neuroblastoma risk, with an odds ratio of 13.9 (95% confidence interval = 5.8-33.4). The association remained significant when we restricted our analysis to individuals of European ancestry in order to mitigate potential confounding by population stratification (0.42% of cases and 0.03% of controls; p = 4.10 × 10-8). We used whole-genome sequencing (WGS) to validate the deletion in paired germline and tumor DNA from 12 cases. Finally, WGS of four parent-child trios revealed that the deletion primarily arose de novo without maternal or paternal bias. This finding expands the clinical phenotypes associated with 16p11.2 microdeletion syndrome to include cancer, and it suggests that disruption of the 16p11.2 region may dysregulate neurodevelopmental pathways that influence both neurological phenotypes and neuroblastoma.


Chromosome Deletion , Chromosomes, Human, Pair 16 , Genetic Predisposition to Disease , Germ Cells , Neuroblastoma/genetics , Case-Control Studies , Female , Humans , Male
...