Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 11(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38001921

ABSTRACT

Aging is a risk factor for many non-communicable diseases such as cardiovascular and neurodegenerative diseases. Extracellular vesicles and particles (EVP) carry microRNAs that may play a role in age-related diseases and may induce oxidative stress. We hypothesized that aging could impact EVP miRNA and impair redox homeostasis, contributing to chronic age-related diseases. Our aims were to investigate the microRNA profiles of circulating total EVPs from aged and young adult animals and to evaluate the pro- and antioxidant machinery in circulating total EVPs. Plasma from 3- and 21-month-old male Wistar rats were collected, and total EVPs were isolated. MicroRNA isolation and microarray expression analysis were performed on EVPs to determine the predicted regulation of targeted mRNAs. Thirty-one mature microRNAs in circulating EVPs were impacted by age and were predicted to target molecules in canonical pathways directly related to cardiovascular diseases and oxidative status. Circulating total EVPs from aged rats had significantly higher NADPH oxidase levels and myeloperoxidase activity, whereas catalase activity was significantly reduced in EVPs from aged animals. Our data shows that circulating total EVP cargo-specifically microRNAs and oxidative enzymes-are involved in redox imbalance in the aging process and can potentially drive cardiovascular aging and, consequently, cardiac disease.

2.
Pharmaceutics ; 14(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35631575

ABSTRACT

Liposomal amphotericin B (AmB) or AmBisome® is the most effective and safe therapeutic agent for visceral leishmaniasis (VL), but its clinical efficacy is limited in cutaneous leishmaniasis (CL) and HIV/VL co-infection. The aim of this work was to develop a formulation of AmB in PEGylated liposomes and compare its efficacy to AmBisome® in a murine model of CL. Formulations of AmB in conventional and PEGylated liposomes were characterized for particle size and morphology, drug encapsulation efficiency and aggregation state. Those were compared to AmBisome® in Leishmania amazonensis-infected BALB/c mice for their effects on the lesion size growth and parasite load. The conventional and PEGylated formulations showed vesicles with 100-130 nm diameter and low polydispersity, incorporating more than 95% of AmB under the non-aggregated form. Following parenteral administration in the murine model of CL, the PEGylated formulation of AmB significantly reduced the lesion size growth and parasite load, in comparison to control groups, in contrast to conventional liposomal AmB. The PEGylated formulation of AmB was also effective when given by oral route on a 2-day regimen. This work reports for the first time that PEGylated liposomal AmB can improve the treatment of experimental cutaneous leishmaniasis by both parenteral and oral routes.

3.
Pharmaceutics ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36678729

ABSTRACT

The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.

4.
Biomed Pharmacother ; 134: 111120, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341671

ABSTRACT

Visceral leishmaniasis (VL) is a systemic parasitic disease that leads to high rates of morbidity and mortality in humans worldwide. There is a great need to develop new drugs and novel strategies to make chemotherapy for this disease more efficacious and well tolerated. Recent reports on the immunomodulatory effects and the low toxicity of the spherical carbon nanostructure fullerol led us to investigate in vitro and in vivo antileishmanial activity in free and encapsulated forms in liposomes. When assayed against intramacrophagic Leishmania amastigotes, fullerol showed a dose-dependent reduction of the infection index with IC50 of 0.042 mg/mL. When given daily by i.p. route for 20 days (0.05 mg/kg/d) in a murine model of acute VL, fullerol promoted significant reduction in the liver parasite load. To improve the delivery of fullerol to the infection sites, liposomal formulations were prepared by the dehydration-rehydration method. When evaluated in the acute VL model, liposomal fullerol (Lip-Ful) formulations given i.p. at 0.05 and 0.2 mg/kg with 4-days intervals were more effective than the free form, with significant parasite reductions in both liver and spleen. Lip-Ful at 0.2 mg/kg promoted complete parasite elimination in the liver. The antileishmanial activity of Lip-Ful was further confirmed in a chronic model of VL. Lip-Ful was also found to induce secretion of pro-inflammatory TNF-α, IFN-γ and IL-1ß cytokines. In conclusion, this work reports for the first time the antileishmanial activity of fullerol and introduces an innovative approach for treatment of VL based on the association of this nanostructure with liposomes.


Subject(s)
Fullerenes/pharmacology , Leishmania infantum/drug effects , Leishmania mexicana/drug effects , Leishmaniasis, Visceral/drug therapy , Lipids/chemistry , Liver/parasitology , Macrophages, Peritoneal/parasitology , Trypanocidal Agents/pharmacology , Animals , Cytokines/blood , Disease Models, Animal , Drug Compounding , Female , Fullerenes/chemistry , Inflammation Mediators/blood , Leishmania infantum/growth & development , Leishmania mexicana/growth & development , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Liposomes , Liver/metabolism , Mesocricetus , Mice, Inbred BALB C , Nanoparticles , Parasite Load , Trypanocidal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL