Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
mBio ; 14(5): e0087523, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37623317

ABSTRACT

IMPORTANCE: To counteract infection with phage, bacteria have evolved a myriad of molecular defense systems. Some of these systems initiate a process called abortive infection, in which the infected cell kills itself to prevent phage propagation. However, such systems must be inhibited in the absence of phage infection to prevent spurious death of the host. Here, we show that the cyclic oligonucleotide based anti-phage signaling system (CBASS) accomplishes this by sensing intracellular folate molecules and only expressing this system in a group. These results enhance our understanding of the evolution of the seventh Vibrio cholerae pandemic and more broadly how bacteria defend themselves against phage infection.


Subject(s)
Bacteriophages , Vibrio cholerae , Vibrio cholerae/metabolism , Quorum Sensing/physiology , Bacteriophages/genetics , Signal Transduction
2.
PLoS Pathog ; 18(5): e1010102, 2022 05.
Article in English | MEDLINE | ID: mdl-35500027

ABSTRACT

Vibrio cholerae respires both aerobically and anaerobically and, while oxygen may be available to it during infection, other terminal electron acceptors are proposed for population expansion during infection. Unlike gastrointestinal pathogens that stimulate significant inflammation leading to elevated levels of oxygen or alternative terminal electron acceptors, V. cholerae infections are not understood to induce a notable inflammatory response. To ascertain the respiration requirements of V. cholerae during infection, we used Multiplex Genome Editing by Natural Transformation (MuGENT) to create V. cholerae strains lacking aerobic or anaerobic respiration. V. cholerae strains lacking aerobic respiration were attenuated in infant mice 105-fold relative to wild type, while strains lacking anaerobic respiration had no colonization defect, contrary to earlier work suggesting a role for anaerobic respiration during infection. Using several approaches, including one we developed for this work termed Comparative Multiplex PCR Amplicon Sequencing (CoMPAS), we determined that the bd-I and cbb3 oxidases are essential for small intestinal colonization of V. cholerae in the infant mouse. The bd-I oxidase was also determined as the primary oxidase during growth outside the host, making V. cholerae the only example of a Gram-negative bacterial pathogen in which a bd-type oxidase is the primary oxidase for energy acquisition inside and outside of a host.


Subject(s)
Cholera , Electron Transport Complex IV , Intestines , Oxidoreductases , Vibrio cholerae , Animals , Bacterial Proteins/metabolism , Cholera/microbiology , Electron Transport Complex IV/metabolism , Humans , Intestines/microbiology , Mice , Oxidative Stress , Oxidoreductases/metabolism , Oxygen/metabolism , Respiration , Vibrio cholerae/growth & development , Vibrio cholerae/metabolism
3.
mBio ; 11(5)2020 09 01.
Article in English | MEDLINE | ID: mdl-32873763

ABSTRACT

Vibrio cholerae replicates to high cell density in the human small intestine, leading to the diarrheal disease cholera. During infection, V. cholerae senses and responds to environmental signals that govern cellular responses. Spatial localization of V. cholerae within the intestine affects nutrient availability and metabolic pathways required for replicative success. Metabolic processes used by V. cholerae to reach such high cell densities are not fully known. We sought to better define the metabolic traits that contribute to high levels of V. cholerae during infection. By disrupting the pyruvate dehydrogenase (PDH) complex and pyruvate formate-lyase (PFL), we could differentiate aerobic and anaerobic metabolic pathway involvement in V. cholerae proliferation. We demonstrate that oxidative metabolism is a key contributor to the replicative success of V. choleraein vivo using an infant mouse model in which PDH mutants were attenuated 100-fold relative to the wild type for colonization. Additionally, metabolism of host substrates, including mucin, was determined to support V. cholerae growth in vitro as a sole carbon source, primarily under aerobic growth conditions. Mucin likely contributes to population expansion during human infection as it is a ubiquitous source of carbohydrates. These data highlight oxidative metabolism as important in the intestinal environment and warrant further investigation of how oxygen and other host substrates shape the intestinal landscape that ultimately influences bacterial disease. We conclude from our results that oxidative metabolism of host substrates is a key driver of V. cholerae proliferation during infection, leading to the substantial bacterial burden exhibited in cholera patients.IMPORTANCEVibrio cholerae remains a challenge in the developing world and incidence of the disease it causes, cholera, is anticipated to increase with rising global temperatures and with emergent, highly infectious strains. At present, the underlying metabolic processes that support V. cholerae growth during infection are less well understood than specific virulence traits, such as production of a toxin or pilus. In this study, we determined that oxidative metabolism of host substrates such as mucin contribute significantly to V. cholerae population expansion in vivo Identifying metabolic pathways critical for growth can provide avenues for controlling V. cholerae infection and the knowledge may be translatable to other pathogens of the gastrointestinal tract.


Subject(s)
Bacterial Proteins/metabolism , Cholera/microbiology , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Acetyltransferases/genetics , Aerobiosis , Age Factors , Animals , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways , Mice , Oxidation-Reduction , Pyruvate Dehydrogenase Complex/genetics , Swine , Vibrio cholerae/growth & development , Virulence
4.
Biochem Biophys Res Commun ; 451(4): 535-40, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25130467

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the gene for CFTR, a cAMP-activated anion channel expressed in apical membranes of wet epithelia. Since CFTR is permeable to HCO3(-), and may regulate bicarbonate exchangers, it is not surprising evidence of changes in extracellular pH (pHo) have been found in CF. Previously we have shown that tracking pHo can be used to differentiate cells expressing wild-type CFTR from controls in mouse mammary epithelial (C127) and fibroblast (NIH/3T3) cell lines. In this study we characterized forskolin-stimulated extracellular acidification rates in epithelia where chemical correction of mutant ΔF508-CFTR converted an aberrant response in acidification (10%+ increase) to wild-type (25%+ decrease). Thus treatment with corrector (10% glycerol) and the resulting increased expression of ΔF508-CFTR at the surface was detected by microphysiometry as a significant reversal from acidification to alkalization of pHo. These results suggest that CFTR activation as well as correction can be detected by carefully monitoring pHo and support findings in the field that extracellular pH acidification may impact the function of airway surface liquid in CF.


Subject(s)
Cystic Fibrosis/physiopathology , Animals , Bicarbonates/metabolism , Colforsin/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Mice, Inbred CFTR , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL