Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Elife ; 122024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896568

ABSTRACT

We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite 'FreeSurfer' (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).


Every year, thousands of human brains are donated to science. These brains are used to study normal aging, as well as neurological diseases like Alzheimer's or Parkinson's. Donated brains usually go to 'brain banks', institutions where the brains are dissected to extract tissues relevant to different diseases. During this process, it is routine to take photographs of brain slices for archiving purposes. Often, studies of dead brains rely on qualitative observations, such as 'the hippocampus displays some atrophy', rather than concrete 'numerical' measurements. This is because the gold standard to take three-dimensional measurements of the brain is magnetic resonance imaging (MRI), which is an expensive technique that requires high expertise ­ especially with dead brains. The lack of quantitative data means it is not always straightforward to study certain conditions. To bridge this gap, Gazula et al. have developed an openly available software that can build three-dimensional reconstructions of dead brains based on photographs of brain slices. The software can also use machine learning methods to automatically extract different brain regions from the three-dimensional reconstructions and measure their size. These data can be used to take precise quantitative measurements that can be used to better describe how different conditions lead to changes in the brain, such as atrophy (reduced volume of one or more brain regions). The researchers assessed the accuracy of the method in two ways. First, they digitally sliced MRI-scanned brains and used the software to compute the sizes of different structures based on these synthetic data, comparing the results to the known sizes. Second, they used brains for which both MRI data and dissection photographs existed and compared the measurements taken by the software to the measurements obtained with MRI images. Gazula et al. show that, as long as the photographs satisfy some basic conditions, they can provide good estimates of the sizes of many brain structures. The tools developed by Gazula et al. are publicly available as part of FreeSurfer, a widespread neuroimaging software that can be used by any researcher working at a brain bank. This will allow brain banks to obtain accurate measurements of dead brains, allowing them to cheaply perform quantitative studies of brain structures, which could lead to new findings relating to neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Brain , Imaging, Three-Dimensional , Machine Learning , Humans , Imaging, Three-Dimensional/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Photography/methods , Dissection , Magnetic Resonance Imaging/methods , Neuropathology/methods , Neuroimaging/methods
2.
PLoS One ; 19(3): e0298642, 2024.
Article in English | MEDLINE | ID: mdl-38483873

ABSTRACT

BACKGROUND: Conventional brain magnetic resonance imaging (MRI) produces image intensities that have an arbitrary scale, hampering quantification. Intensity scaling aims to overcome this shortfall. As neurodegenerative and inflammatory disorders may affect all brain compartments, reference regions within the brain may be misleading. Here we summarize approaches for intensity scaling of conventional T1-weighted (w) and T2w brain MRI avoiding reference regions within the brain. METHODS: Literature was searched in the databases of Scopus, PubMed, and Web of Science. We included only studies that avoided reference regions within the brain for intensity scaling and provided validating evidence, which we divided into four categories: 1) comparative variance reduction, 2) comparative correlation with clinical parameters, 3) relation to quantitative imaging, or 4) relation to histology. RESULTS: Of the 3825 studies screened, 24 fulfilled the inclusion criteria. Three studies used scaled T1w images, 2 scaled T2w images, and 21 T1w/T2w-ratio calculation (with double counts). A robust reduction in variance was reported. Twenty studies investigated the relation of scaled intensities to different types of quantitative imaging. Statistically significant correlations with clinical or demographic data were reported in 8 studies. Four studies reporting the relation to histology gave no clear picture of the main signal driver of conventional T1w and T2w MRI sequences. CONCLUSIONS: T1w/T2w-ratio calculation was applied most often. Variance reduction and correlations with other measures suggest a biologically meaningful signal harmonization. However, there are open methodological questions and uncertainty on its biological underpinning. Validation evidence on other scaling methods is even sparser.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
3.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37333251

ABSTRACT

We present open-source tools for 3D analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (i) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (ii) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite "FreeSurfer" ( https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools ).

4.
ArXiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37292481

ABSTRACT

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

5.
J Comp Neurol ; 531(18): 2062-2079, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700618

ABSTRACT

Investigating interindividual variability is a major field of interest in neuroscience. The entorhinal cortex (EC) is essential for memory and affected early in the progression of Alzheimer's disease (AD). We combined histology ground-truth data with ultrahigh-resolution 7T ex vivo MRI to analyze EC interindividual variability in 3D. Further, we characterized (1) entorhinal shape as a whole, (2) entorhinal subfield range and midpoints, and (3) subfield architectural location and tau burden derived from 3D probability maps. Our results indicated that EC shape varied but was not related to demographic or disease factors at this preclinical stage. The medial intermediate subfield showed the highest degree of location variability in the probability maps. However, individual subfields did not display the same level of variability across dimensions and outcome measure, each providing a different perspective. For example, the olfactory subfield showed low variability in midpoint location in the superior-inferior dimension but high variability in anterior-posterior, and the subfield entorhinal intermediate showed a large variability in volumetric measures but a low variability in location derived from the 3D probability maps. These findings suggest that interindividual variability within the entorhinal subfields requires a 3D approach incorporating multiple outcome measures. This study provides 3D probability maps of the individual entorhinal subfields and respective tau pathology in the preclinical stage (Braak I and II) of AD. These probability maps illustrate the subfield average and may serve as a checkpoint for future modeling.


Subject(s)
Alzheimer Disease , Hippocampus , Humans , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Entorhinal Cortex , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology
6.
ArXiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37608932

ABSTRACT

Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.

7.
ArXiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37396608

ABSTRACT

Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis and treatment of gliomas have decreased mortality rates across the Global North, while chances of survival among individuals in low- and middle-income countries (LMICs) remain unchanged and are significantly worse in Sub-Saharan Africa (SSA) populations. Long-term survival with glioma is associated with the identification of appropriate pathological features on brain MRI and confirmation by histopathology. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge have evaluated state-of-the-art machine learning methods to detect, characterize, and classify gliomas. However, it is unclear if the state-of-the-art methods can be widely implemented in SSA given the extensive use of lower-quality MRI technology, which produces poor image contrast and resolution and more importantly, the propensity for late presentation of disease at advanced stages as well as the unique characteristics of gliomas in SSA (i.e., suspected higher rates of gliomatosis cerebri). Thus, the BraTS-Africa Challenge provides a unique opportunity to include brain MRI glioma cases from SSA in global efforts through the BraTS Challenge to develop and evaluate computer-aided-diagnostic (CAD) methods for the detection and characterization of glioma in resource-limited settings, where the potential for CAD tools to transform healthcare are more likely.

8.
Neuroimage ; 274: 120129, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37088323

ABSTRACT

The human thalamus is a highly connected brain structure, which is key for the control of numerous functions and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemisphere informed by both modalities. We present an improved probabilistic atlas, incorporating thalamic nuclei identified from histology and 45 white matter tracts surrounding the thalamus identified in ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of nuclear groups versus segmentation based solely on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of differential thalamic involvement in Alzheimer's disease (AUROC 81.98%). The probabilistic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer (https://freesurfer.net/fswiki/ThalamicNucleiDTI).


Subject(s)
Diffusion Tensor Imaging , Thalamic Nuclei , Humans , Bayes Theorem , Reproducibility of Results , Thalamic Nuclei/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
9.
Neuroimage Clin ; 38: 103354, 2023.
Article in English | MEDLINE | ID: mdl-36907041

ABSTRACT

In this paper we describe and validate a longitudinal method for whole-brain segmentation of longitudinal MRI scans. It builds upon an existing whole-brain segmentation method that can handle multi-contrast data and robustly analyze images with white matter lesions. This method is here extended with subject-specific latent variables that encourage temporal consistency between its segmentation results, enabling it to better track subtle morphological changes in dozens of neuroanatomical structures and white matter lesions. We validate the proposed method on multiple datasets of control subjects and patients suffering from Alzheimer's disease and multiple sclerosis, and compare its results against those obtained with its original cross-sectional formulation and two benchmark longitudinal methods. The results indicate that the method attains a higher test-retest reliability, while being more sensitive to longitudinal disease effect differences between patient groups. An implementation is publicly available as part of the open-source neuroimaging package FreeSurfer.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Reproducibility of Results , Cross-Sectional Studies , Brain/pathology , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted
10.
Med Image Anal ; 86: 102789, 2023 05.
Article in English | MEDLINE | ID: mdl-36857946

ABSTRACT

Despite advances in data augmentation and transfer learning, convolutional neural networks (CNNs) difficultly generalise to unseen domains. When segmenting brain scans, CNNs are highly sensitive to changes in resolution and contrast: even within the same MRI modality, performance can decrease across datasets. Here we introduce SynthSeg, the first segmentation CNN robust against changes in contrast and resolution. SynthSeg is trained with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation strategy where we fully randomise the contrast and resolution of the synthetic training data. Consequently, SynthSeg can segment real scans from a wide range of target domains without retraining or fine-tuning, which enables straightforward analysis of huge amounts of heterogeneous clinical data. Because SynthSeg only requires segmentations to be trained (no images), it can learn from labels obtained by automated methods on diverse populations (e.g., ageing and diseased), thus achieving robustness to a wide range of morphological variability. We demonstrate SynthSeg on 5,000 scans of six modalities (including CT) and ten resolutions, where it exhibits unparallelled generalisation compared with supervised CNNs, state-of-the-art domain adaptation, and Bayesian segmentation. Finally, we demonstrate the generalisability of SynthSeg by applying it to cardiac MRI and CT scans.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Humans , Bayes Theorem , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods
11.
Sci Rep ; 12(1): 19744, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396681

ABSTRACT

Survival prediction models can potentially be used to guide treatment of glioblastoma patients. However, currently available MR imaging biomarkers holding prognostic information are often challenging to interpret, have difficulties generalizing across data acquisitions, or are only applicable to pre-operative MR data. In this paper we aim to address these issues by introducing novel imaging features that can be automatically computed from MR images and fed into machine learning models to predict patient survival. The features we propose have a direct anatomical-functional interpretation: They measure the deformation caused by the tumor on the surrounding brain structures, comparing the shape of various structures in the patient's brain to their expected shape in healthy individuals. To obtain the required segmentations, we use an automatic method that is contrast-adaptive and robust to missing modalities, making the features generalizable across scanners and imaging protocols. Since the features we propose do not depend on characteristics of the tumor region itself, they are also applicable to post-operative images, which have been much less studied in the context of survival prediction. Using experiments involving both pre- and post-operative data, we show that the proposed features carry prognostic value in terms of overall- and progression-free survival, over and above that of conventional non-imaging features.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Neoplasms/pathology , Prognosis
13.
Front Neurosci ; 15: 708196, 2021.
Article in English | MEDLINE | ID: mdl-34531715

ABSTRACT

Most data-driven methods are very susceptible to data variability. This problem is particularly apparent when applying Deep Learning (DL) to brain Magnetic Resonance Imaging (MRI), where intensities and contrasts vary due to acquisition protocol, scanner- and center-specific factors. Most publicly available brain MRI datasets originate from the same center and are homogeneous in terms of scanner and used protocol. As such, devising robust methods that generalize to multi-scanner and multi-center data is crucial for transferring these techniques into clinical practice. We propose a novel data augmentation approach based on Gaussian Mixture Models (GMM-DA) with the goal of increasing the variability of a given dataset in terms of intensities and contrasts. The approach allows to augment the training dataset such that the variability in the training set compares to what is seen in real world clinical data, while preserving anatomical information. We compare the performance of a state-of-the-art U-Net model trained for segmenting brain structures with and without the addition of GMM-DA. The models are trained and evaluated on single- and multi-scanner datasets. Additionally, we verify the consistency of test-retest results on same-patient images (same and different scanners). Finally, we investigate how the presence of bias field influences the performance of a model trained with GMM-DA. We found that the addition of the GMM-DA improves the generalization capability of the DL model to other scanners not present in the training data, even when the train set is already multi-scanner. Besides, the consistency between same-patient segmentation predictions is improved, both for same-scanner and different-scanner repetitions. We conclude that GMM-DA could increase the transferability of DL models into clinical scenarios.

14.
Proc IEEE Int Symp Biomed Imaging ; 2021: 1971-1974, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34367472

ABSTRACT

We present the first deep learning method to segment Multiple Sclerosis lesions and brain structures from MRI scans of any (possibly multimodal) contrast and resolution. Our method only requires segmentations to be trained (no images), as it leverages the generative model of Bayesian segmentation to generate synthetic scans with simulated lesions, which are then used to train a CNN. Our method can be retrained to segment at any resolution by adjusting the amount of synthesised partial volume. By construction, the synthetic scans are perfectly aligned with their labels, which enables training with noisy labels obtained with automatic methods. The training data are generated on the fly, and aggressive augmentation (including artefacts) is applied for improved generalisation. We demonstrate our method on two public datasets, comparing it with a state-of-the-art Bayesian approach implemented in FreeSurfer, and dataset specific CNNs trained on real data. The code is available at https://github.com/BBillot/SynthSeg.

15.
Phys Imaging Radiat Oncol ; 18: 55-60, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34258409

ABSTRACT

BACKGROUND AND PURPOSE: Radiotherapy (RT) based on magentic resonance imaging (MRI) only is currently used clinically in the pelvis. A synthetic computed tomography (sCT) is needed for dose planning. Here, we investigate the accuracy of cone beam CT (CBCT) based MRI-only image guided RT (IGRT) and sCT image quality. MATERIALS AND METHODS: CT, MRI and CBCT scans of ten prostate cancer patients were included. The MRI was converted to a sCT using a multi-atlas approach. The sCT, CT and MR images were auto-matched with the CBCT on the bony anatomy. Paired sCT-CT and sCT-CBCT data were created. CT numbers were converted to relative electron (RED) and mass densities (DES) using a standard calibration curve for the CT and sCT. For the CBCT RED/DES conversion, a phantom and paired CT-CBCT population based calibration curve was used. For the latter, the CBCT numbers were averaged in 100 HU bins and the known RED/DES of the CT were assigned. The paired sCT-CT and sCT-CBCT data were averaged in bins of 10 HU or 0.01 RED/DES. The median absolute error (MeAE) between the sCT-CT and sCT-CBCT bins was calculated. Wilcoxon rank-sum tests were carried out for the IGRT and MeAE study. RESULTS: The mean sCT or MR IGRT difference from CT was ≤ 2 mm but significant differences were observed. A CBCT HU or phantom-based RED/DES MeAE did not estimate the sCT quality similar to a CT based MeAE but the CBCT population-based RED/DES MeAE did. CONCLUSIONS: MRI-only CBCT-based IGRT seems feasible but caution is advised. A MeAE around 0.1 DES could call for sCT quality inspection.

16.
Neuroimage ; 237: 118113, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33940143

ABSTRACT

Accurate and reliable whole-brain segmentation is critical to longitudinal neuroimaging studies. We undertake a comparative analysis of two subcortical segmentation methods, Automatic Segmentation (ASEG) and Sequence Adaptive Multimodal Segmentation (SAMSEG), recently provided in the open-source neuroimaging package FreeSurfer 7.1, with regard to reliability, bias, sensitivity to detect longitudinal change, and diagnostic sensitivity to Alzheimer's disease. First, we assess intra- and inter-scanner reliability for eight bilateral subcortical structures: amygdala, caudate, hippocampus, lateral ventricles, nucleus accumbens, pallidum, putamen and thalamus. For intra-scanner analysis we use a large sample of participants (n = 1629) distributed across the lifespan (age range = 4-93 years) and acquired on a 1.5T Siemens Avanto (n = 774) and a 3T Siemens Skyra (n = 855) scanners. For inter-scanner analysis we use a sample of 24 participants scanned on the day with three models of Siemens scanners: 1.5T Avanto, 3T Skyra and 3T Prisma. Second, we test how each method detects volumetric age change using longitudinal follow up scans (n = 491 for Avanto and n = 245 for Skyra; interscan interval = 1-10 years). Finally, we test sensitivity to clinically relevant change. We compare annual rate of hippocampal atrophy in cognitively normal older adults (n = 20), patients with mild cognitive impairment (n = 20) and Alzheimer's disease (n = 20). We find that both ASEG and SAMSEG are reliable and lead to the detection of within-person longitudinal change, although with notable differences between age-trajectories for most structures, including hippocampus and amygdala. In summary, SAMSEG yields significantly lower differences between repeated measures for intra- and inter-scanner analysis without compromising sensitivity to changes and demonstrating ability to detect clinically relevant longitudinal changes.


Subject(s)
Aging , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging/standards , Neuroimaging/standards , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Atrophy , Brain/pathology , Child , Child, Preschool , Cognitive Dysfunction/pathology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Image Interpretation, Computer-Assisted , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
17.
Neuroimage ; 225: 117471, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33099007

ABSTRACT

Here we present a method for the simultaneous segmentation of white matter lesions and normal-appearing neuroanatomical structures from multi-contrast brain MRI scans of multiple sclerosis patients. The method integrates a novel model for white matter lesions into a previously validated generative model for whole-brain segmentation. By using separate models for the shape of anatomical structures and their appearance in MRI, the algorithm can adapt to data acquired with different scanners and imaging protocols without retraining. We validate the method using four disparate datasets, showing robust performance in white matter lesion segmentation while simultaneously segmenting dozens of other brain structures. We further demonstrate that the contrast-adaptive method can also be safely applied to MRI scans of healthy controls, and replicate previously documented atrophy patterns in deep gray matter structures in MS. The algorithm is publicly available as part of the open-source neuroimaging package FreeSurfer.


Subject(s)
Brain/pathology , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Algorithms , Atrophy/pathology , Brain/diagnostic imaging , Gray Matter/pathology , Humans , Multiple Sclerosis/diagnostic imaging , Neuroimaging , White Matter/pathology
18.
Neuroimage ; 219: 117044, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32534963

ABSTRACT

Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing. This requires detailed models of the individual head anatomy, combined with electric field simulations, to find an optimal stimulation protocol for a given cortical target. Considering the anatomical and functional complexity of different brain disorders and pathologies, it is crucial to account for the anatomical variability in order to translate TBS from a research tool into a viable option for treatment. In this article we present a new method, called CHARM, for automated segmentation of fifteen different head tissues from magnetic resonance (MR) scans. The new method compares favorably to two freely available software tools on a five-tissue segmentation task, while obtaining reasonable segmentation accuracy over all fifteen tissues. The method automatically adapts to variability in the input scans and can thus be directly applied to clinical or research scans acquired with different scanners, sequences or settings. We show that an increase in automated segmentation accuracy results in a lower relative error in electric field simulations when compared to anatomical head models constructed from reference segmentations. However, also the improved segmentations and, by implication, the electric field simulations are affected by systematic artifacts in the input MR scans. As long as the artifacts are unaccounted for, this can lead to local simulation differences up to 30% of the peak field strength on reference simulations. Finally, we exemplarily demonstrate the effect of including all fifteen tissue classes in the field simulations against the standard approach of using only five tissue classes and show that for specific stimulation configurations the local differences can reach 10% of the peak field strength.


Subject(s)
Brain/diagnostic imaging , Head/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Brain/physiology , Brain Mapping/methods , Computer Simulation , Electroencephalography , Head/physiology , Humans , Magnetoencephalography , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation
19.
Phys Med Biol ; 64(24): 245012, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31766033

ABSTRACT

Metal artifact reduction (MAR) algorithms reduce the errors caused by metal implants in x-ray computed tomography (CT) images and are an important part of error management in radiotherapy. A promising MAR approach is to leverage the information in magnetic resonance (MR) images that can be acquired for organ or tumor delineation. This is however complicated by the ambiguous relationship between CT values and conventional-sequence MR intensities as well as potential co-registration issues. In order to address these issues, this paper proposes a self-tuning Bayesian model for MR-based MAR that combines knowledge of the MR image intensities in local spatial neighborhoods with the information in an initial, corrupted CT reconstructed using filtered back projection. We demonstrate the potential of the resulting model in three widely-used MAR scenarios: image inpainting, sinogram inpainting and model-based iterative reconstruction. Compared to conventional alternatives in a retrospective study on nine head-and-neck patients with CT and T1-weighted MR scans, we find improvements in terms of image quality and quantitative CT value accuracy within each scenario. We conclude that the proposed model provides a versatile way to use the anatomical information in a co-acquired MR scan to boost the performance of MAR algorithms.


Subject(s)
Artifacts , Magnetic Resonance Imaging/methods , Prostheses and Implants/adverse effects , Tomography, X-Ray Computed/methods , Bayes Theorem , Humans , Magnetic Resonance Imaging/standards , Metals/adverse effects , Metals/radiation effects , Tomography, X-Ray Computed/standards
20.
Med Phys ; 46(10): 4314-4323, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31332792

ABSTRACT

PURPOSE: We investigated the impact on computed tomography (CT) image quality and photon, electron, and proton head-and-neck (H&N) radiotherapy (RT) dose calculations of three CT metal artifact reduction (MAR) approaches: A CT-based algorithm (oMAR Philips Healthcare), manual water override, and our recently presented, Magnetic Resonance (MR)-based kerMAR algorithm. We considered the following three hypotheses: I: Manual water override improves MAR over the CT- and MR-based alternatives; II: The automatic algorithms (oMAR and kerMAR) improve MAR over the uncorrected CT; III: kerMAR improves MAR over oMAR. METHODS: We included a veal shank phantom with/without six metal inserts and nine H&N RT patients with dental implants. We quantified the MAR capabilities by the reduction of outliers in the CT value distribution in regions of interest, and the change in particle range and photon depth at maximum dose. RESULTS: Water override provided apparent image improvements in the soft tissue region but insignificantly or negatively influenced the dose calculations. We however found significant improvements in image quality and particle range impact, compared to the uncorrected CT, when using oMAR and kerMAR. kerMAR in turn provided superior improvements in terms of high intensity streak suppression compared to oMAR, again with associated impacts on the particle range estimates. CONCLUSION: We found no benefits of the water override compared to the rest, and tentatively reject hypothesis I. We however found improvements in the automatic algorithms, and thus support for hypothesis II, and found the MR-based kerMAR to improve upon oMAR, supporting hypothesis III.


Subject(s)
Artifacts , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Magnetic Resonance Imaging , Metals , Tomography, X-Ray Computed , Electrons/therapeutic use , Humans , Photons/therapeutic use , Proton Therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...