Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800005

ABSTRACT

The use of plant-derived natural products for the treatment of tropical parasitic diseases often has ethnopharmacological origins. As such, plants grown in temperate regions remain largely untested for novel anti-parasitic activities. We describe here a screen of the PhytoQuest Phytopure library, a novel source comprising over 600 purified compounds from temperate zone plants, against in vitro culture systems for Plasmodium falciparum, Leishmania mexicana, Trypanosoma evansi and T. brucei. Initial screen revealed 6, 65, 15 and 18 compounds, respectively, that decreased each parasite's growth by at least 50% at 1-2 µM concentration. These initial hits were validated in concentration-response assays against the parasite and the human HepG2 cell line, identifying hits with EC50 < 1 µM and a selectivity index of >10. Two sesquiterpene glycosides were identified against P. falciparum, four sterols against L. mexicana, and five compounds of various scaffolds against T. brucei and T. evansi. An L. mexicana resistant line was generated for the sterol 700022, which was found to have cross-resistance to the anti-leishmanial drug miltefosine as well as to the other leishmanicidal sterols. This study highlights the potential of a temperate plant secondary metabolites as a novel source of natural products against tropical parasitic diseases.

2.
Front Plant Sci ; 10: 984, 2019.
Article in English | MEDLINE | ID: mdl-31417596

ABSTRACT

Artemisinin, a sesquiterpene lactone produced by Artemisia annua glandular secretory trichomes, is the active ingredient in the most effective treatment for uncomplicated malaria caused by Plasmodium falciparum parasites. Other metabolites in A. annua or related species, particularly flavonoids, have been proposed to either act as antimalarials on their own or act synergistically with artemisinin to enhance antimalarial activity. We identified a mutation that disrupts the CHALCONE ISOMERASE 1 (CHI1) enzyme that is responsible for the second committed step of flavonoid biosynthesis. Detailed metabolite profiling revealed that chi1-1 lacks all major flavonoids but produces wild-type artemisinin levels, making this mutant a useful tool to test the antiplasmodial effects of flavonoids. We used whole-leaf extracts from chi1-1 and mutant lines impaired in artemisinin production in bioactivity in vitro assays against intraerythrocytic P. falciparum Dd2. We found that chi1-1 extracts did not differ from wild-type extracts in antiplasmodial efficacy nor initial rate of cytocidal action. Furthermore, extracts from the A. annua cyp71av1-1 mutant and RNAi lines impaired in amorpha-4,11-diene synthase gene expression, which are both severely compromised in artemisinin biosynthesis but unaffected in flavonoid metabolism, showed very low or no antiplasmodial activity. These results demonstrate that in vitro bioactivity against P. falciparum of flavonoids is negligible when compared to that of artemisinin.

SELECTION OF CITATIONS
SEARCH DETAIL