Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sensors (Basel) ; 23(19)2023 Sep 26.
Article En | MEDLINE | ID: mdl-37836914

This study investigates wireless power transfer for deep in-body receivers, determining the optimal frequency, power budget, and design for the transmitter and receiver. In particular, the focus is on small, in-body receivers at large depths up to 20 cm for obese patients. This enables long-term monitoring of the gastrointestinal tract for all body types. Numerical simulations are used to investigate power transfer and losses as a function of frequency and to find the optimal design at the selected frequency for an obese body model. From all ISM-frequencies in the investigated range (1 kHz-10 GHz), the value of 13.56 MHz yields the best performance. This optimum corresponds to the transition from dominant copper losses in conductors to dominant losses in conductive tissue. At this frequency, a transmitting and receiving coil are designed consisting of 12 and 23 windings, respectively. With a power transfer efficiency of 2.70×10-5, 18 µW can be received for an input power of 0.68 W while still satisfying exposure guidelines. The power transfer is validated by measurements. For the first time, efficiency values and the power budget are reported for WPT through 20 cm of tissue to mm sized receivers. Compared to WPT at higher frequencies, as commonly used for small receivers, the proposed system is more suitable for WPT to large depths in-body and comes with the advantage that no focusing is required, which can accommodate multiple receivers and uncertainty about receiver location more easily. The received power allows long-term sensing in the gastrointestinal tract by, e.g., temperature, pressure, and pH sensors, motility sensing, or even gastric stimulation.


Prostheses and Implants , Wireless Technology , Humans , Electric Power Supplies , Equipment Design , Electric Conductivity
2.
IEEE Trans Biomed Eng ; 67(12): 3276-3287, 2020 12.
Article En | MEDLINE | ID: mdl-32203014

OBJECTIVE: Excitation of myelinated nerve fibers is investigated by means of numerical simulations, for the application of percutaneous auricular vagus nerve stimulation (pVNS). High sensitivity to axon diameter is of interest regarding the goal of targeting thicker fibers. METHODS: Excitation and blocking thresholds for different pulse types, phase durations, axon depths, axon-electrode distances, temperatures and axon diameters are investigated. The used model consists of a 50 mm long axon and a centrally located needle electrode in a layered medium representing the auricle. Neuronal excitation is simulated using the Frankenhaeuser-Huxley equations for all combinations of parameter values. RESULTS AND CONCLUSION: Multiple modes and locations of excitation along the axon were observed, depending on the pulse type and amplitude. When increasing the axon-electrode distance from 1 mm to 2 mm, sensitivity of thresholds to axon depth decreased with ca. 50%, while sensitivity to axon-electrode distance, axon diameter and phase duration each increased with ca. 15% to 20%, except from monophasic anodal pulses, showing a 45% decrease for axon-electrode distance. These trends for axon diameter and axon-electrode distance allow for more selective stimulation of thicker target fibers using monophasic anodal pulses at higher axon-electrode distances. Cathodal monophasic pulses did not perform well due to blocking of the thicker fibers, which was only rarely seen for other pulse types. SIGNIFICANCE: Sensitivities of stimulation thresholds to these parameters by numerical simulation reveal how the stimulation parameters can be changed in order to increase therapeutic effect and comfort during pVNS by enabling more selective stimulation.


Vagus Nerve Stimulation , Axons , Electric Stimulation , Electrodes , Models, Neurological , Nerve Fibers, Myelinated , Vagus Nerve
...