Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Molecules ; 29(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39125094

ABSTRACT

Adsorptive-photocatalytic composites based on activated carbon (AC) and α-ferrous oxalate dihydrate (α-FOD) were synthesized by an original two-step method and subsequently used for the removal of phenol from aqueous solutions. To obtain the composites, ferrotitaniferous black mineral sands (0.6FeTiO3·0.4Fe2O3) were first dissolved in an oxalic acid solution at ambient pressure, and further treated under hydrothermal conditions to precipitate α-FOD on the AC surface. The ratio of oxalic acid to the mineral sand precursor was tuned to obtain composites with 8.3 and 42.7 wt.% of α-FOD on the AC surface. These materials were characterized by X-ray powder diffraction, scanning electron microscopy, and the nitrogen adsorption-desorption method. The phenol removal efficiency of the composites was determined during 24 h of adsorption under dark conditions, followed by 24 h of adsorption-photocatalysis under visible light irradiation. AC/α-FOD composites with 8.3 and 42.7 wt.% of α-FOD adsorbed 60% and 51% of phenol in 24 h and reached a 90% and 96% removal efficiency after 12 h of irradiation, respectively. Given its higher photocatalytic response, the 42.7 wt.% α-FOD composite was also tested during successive cycles of adsorption and adsorption-photocatalysis. This composite exhibited a reasonable level of cyclability (~99% removal after four alternated dark/irradiated cycles of 24 h and ~68% removal after three simultaneous adsorption-photocatalysis cycles of 24 h). The promising performance of the as-prepared composites opens several opportunities for their application in the effective removal of organic micropollutants from water.

2.
Foods ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611394

ABSTRACT

Within the realm of archaeology, the analysis of biomolecules assumes significant importance in elucidating historical dietary patterns and their implications for contemporary contexts. To achieve this, knowledge and tools of both chemistry and archaeology are essential to yield objective outcomes and conduct analyses of archaeological materials for the detection of biomolecules. Usually, only minuscule remnants of ceramic fragments are retrieved from excavations, which limits the feasibility of comprehensive laboratory analysis. This study aimed to establish a protocol for analyzing fatty acids and starch from archaeological food utensils with minimal sample quantities. Various experiments were conducted to replicate preparations that might have occurred in archaeological vessels, aiming to establish the optimal protocol. The analyses were performed using clay griddles, subjecting vegetable oil to varying temperatures for fatty acid assessment. For starch analysis, a series of experiments encompassed diverse forms of potato preparations (pulp, chuño, tortilla, carbonization, and freeze-drying) and maize (flour, tortilla, and carbonization). The verification of the experiments was confirmed by conducting identical analyses, as developed in the current study, on authentic archaeological fragments. The principal outcomes of this investigation include the successful extraction of both types of biomolecules using only 0.25 g of the sample, obtained through direct scraping from the vessel. Soxhlet extraction was identified as the most efficient strategy to recover fatty acids. Additionally, a comprehensive protocol for the identification of starch extraction was developed. This study has, for the first time, elucidated two detailed methodologies for the extraction of fatty acids and starch in scenarios in which researchers can obtain limited quantities of archaeological food utensil fragments.

3.
Foods ; 12(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959042

ABSTRACT

Cocoa liquor is the primary precursor of the worldwide highly appreciated commodity chocolate. Its quality depends on several factors, such as the type of cocoa, the fermentation process, and the control of the contaminants in the fermented beans. This study aims to evaluate whether the induced magnetic field treatment during the fermentation process or the pathogen reduction with gamma irradiation after the fermentation affect the characteristics of the cocoa liquor obtained from Ecuadorian cocoa beans. For this purpose, liquor samples from controls (standard process), from beans treated with an induced magnetic field up to 80 mT, and from beans irradiated with nominal doses up to 3 kGy were characterized through Raman spectroscopic analysis and sensorial evaluation. The most relevant bands of the cocoa liquor were assigned according to reports from the literature, spectroscopic data, and chemometrics. The spectra corresponding to different treatments and doses were visually very similar, but they could be discriminated using OPLS-DA models, where the most intense Raman signals were attributed to the lipid components. The sensorial evaluation rated the presence of floral, fruity, almondy, acid, and bitter flavors, along with astringency and intense aroma, and these attributes exhibited variable behavior depending on the dose of the irradiation or magnetic treatment. Therefore, both treatments may exert an influence on cocoa beans and, therefore, on the cocoa liquor quality.

4.
Food Addit Contam Part B Surveill ; 13(2): 107-114, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32151232

ABSTRACT

Clenbuterol is a steroid-type drug used in respiratory treatments in both humans and animals. However, it has a secondary effect related to the hypertrophy process in muscle and fat reduction. The illegal or bad use of clenbuterol has been reported in several countries, but there is scarce information in South America, where the production and consumption of meat are considerable. In this sense, the present study aimed at evaluating the occurrence of clenbuterol in bovine muscle and liver samples from a high cattle production area of Ecuador in 2015 and 2018. For this purpose, 57-58 samples were evaluated in 2015 and 20 samples in 2018 using the Enzyme-Linked Inmuno Sorbent Assay and ultrahigh-performance liquid chromatography-tandem mass spectrometry. The results showed complained results for clenbuterol in meat samples from both years and 23% (2015) and 85% (2018) of the samples of meat complied the maximum residue level defined by CODEX.


Subject(s)
Clenbuterol/analysis , Drug Residues/analysis , Food Contamination/analysis , Liver/chemistry , Muscle, Skeletal/chemistry , Red Meat/analysis , Animals , Cattle , Ecuador
5.
Foods ; 8(3)2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30897757

ABSTRACT

Honey is one of the oldest sweetening foods and has economic importance, making this product attractive to adulteration with cheap sugars. This can cause a critical problem in the honey industry and a possible health risk. The present work has the aim of evaluating the authenticity of honey commercialized in two different provinces of Ecuador (Pichincha and Loja) by performing physicochemical and spectroscopic analyses. For this study 25 samples were collected from different places and markets and characterized by water, sucrose, reducing sugars and electric conductivity measurement. Also, their Raman and Infrared (IR) spectra were recorded and analysed using a Principal Component Analysis (PCA) in order to verify the quality of the honeys. In addition, a screening of several pesticides was performed in order to verify possible chemical threats to human health and honey bees. It was found that 8 samples have a deviation from the Standard established parameters. Two of them have a high difference in the content of sucrose and reducing sugars, which are located deviated from all the other samples in the PCA of the applied vibrational spectroscopy (IR/Raman), shaping two clear clusters. The results show that Raman and IR spectroscopy is appropriate techniques for the quality control of honey and correlates well with the physicochemical analyses.

6.
J Vet Diagn Invest ; 29(1): 91-99, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27852815

ABSTRACT

Tissue fixation, a central element in histotechnology, is currently performed with chemical compounds potentially harmful for human health and the environment. Therefore, alternative fixatives are being developed, including alcohol-based solutions. We evaluated several ethanol-based mixtures with additives to study fixative penetration rate, tissue volume changes, and morphologic effects in the bovine testis. Fixatives used were Bouin solution, 4% formaldehyde (F4), 70% ethanol (E70), E70 with 1.5% glycerol (E70G), E70 with 5% acetic acid (E70A), E70 with 1.5% glycerol and 5% acetic acid (E70AG), and E70 with 1.5% glycerol, 5% acetic acid, and 1% dimethyl sulfoxide (DMSO; E70AGD). Five-millimeter bovine testicular tissue cubes could be completely penetrated by ethanol-based fixatives and Bouin solution in 2-3 h, whereas F4 required 21 h. Bouin solution produced general tissue shrinkage, whereas the other fixatives (alcohol-based and F4) caused tissue volume expansion. Although Bouin solution is an excellent fixative for testicular tissue, ethanol-based fixatives showed good penetration rates, low tissue shrinkage, and preserved sufficient morphology to allow identification of the stages of the seminiferous epithelium cycle, therefore representing a valid alternative for histotechnology laboratories. Common additives such as acetic acid, glycerol, and DMSO offered marginal benefits for the process of fixation; E70AG showed the best preservation of morphology with excellent nuclear detail, close to that of Bouin solution.


Subject(s)
Acetic Acid , Ethanol , Fixatives , Formaldehyde , Picrates , Testis/pathology , Tissue Fixation/veterinary , Animals , Cattle , Male
7.
Food Chem ; 211: 274-80, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27283632

ABSTRACT

Cocoa (Theobroma cacao) is a crop of economic importance. In Ecuador, there are two predominant cocoa varieties: National and CCN-51. The National variety is the most demanded, since its cocoa beans are used to produce the finest chocolates. Raman measurements of fermented, dried and unpeeled cocoa beans were performed using a handheld spectrometer. Samples of the National and CCN-51 varieties were collected from different provinces and studied in this work. For each sample, 25 cocoa beans were considered and each bean was measured at 4 different spots. The most important Raman features of the spectra were assigned and discussed. The spectroscopic data were processed using chemometrics, resulting in a distinction of varieties with 91.8% of total accuracy. Differences in the average Raman spectra of cocoa beans from different sites but within the same variety can be attributed to environmental factors affecting the cocoa beans during the fermentation and drying processes.


Subject(s)
Cacao/chemistry , Cacao/metabolism , Fermentation/physiology , Seeds/chemistry , Seeds/metabolism , Spectrum Analysis, Raman/methods , Bioreactors , Desiccation , Ecuador , Geography
8.
Article in English | MEDLINE | ID: mdl-24036306

ABSTRACT

The mineral composition of the Upper Cretaceous Duwi phosphorite deposits and underlying Quseir Variegated Shale from Safaga district, Red Sea Range, Egypt, was investigated by dispersive and Fourier transformed Raman spectroscopy. The only phosphorous containing mineral detected in the phosphorite deposits was carbonate fluorapatite. Often carbonate fluorapatite appears associated with calcium sulfate and seldom with calcium carbonate in the investigated samples. Iron is present in the form of goethite and pyrite in the phosphorite layer, while pyrite, marcasite and hematite were identified in the Quseir Shale samples. Also, a high amount of disordered carbon was detected in the black shale layers. The Raman results confirm the hypothesis that the formation of the phosphorites took place in a marine environment. During the formation of black shale, the redox conditions changed, with the pH reaching values of 4 or even lower. Diagenetic and weathering transformations had taken place in the phosphorite deposits, calcium sulfate and goethite being products of these types of processes.


Subject(s)
Geologic Sediments/chemistry , Minerals/chemistry , Oceans and Seas , Phosphates/chemistry , Spectrum Analysis, Raman , Apatites/chemistry , Egypt , Iron/chemistry , Spectroscopy, Fourier Transform Infrared , Time Factors
9.
Article in English | MEDLINE | ID: mdl-23880412

ABSTRACT

Atmospheric particulate matter is composed of inorganic and organic components of natural and anthropogenic origin. Wind-transport is probably the most important process responsible for the emission of solid particulate matter into the troposphere, but there are also important contributions from chemical reactions due to the interaction of different atmospheric components in presence of water and solar radiation. Sulfate, nitrate and carbonate salts can be both reactants and products in this complex dynamic system, and there is no doubt about their important impact on the climate. Both simple and mixed salts can be produced in atmosphere by dissolution-crystallization processes. The Raman spectra of 45 representative salts of the atmospheric environment were recorded and the bands assigned. The chemometric analysis of the spectroscopic data of these 45 salts demonstrates the suitability of Raman spectroscopy to classify and identify sulfate, nitrate and carbonate salts of atmospheric importance. Salts were classified into three groups: "sulfates", "nitrates or carbonates" and "sulfate-nitrates or sulfate-carbonate". This kind of information is relevant in atmospheric studies because specific characteristics of the salts can provide valuable information about the origin of the salts, the atmospheric chemistry and climate forcing, thus contributing to the evaluation of environmental impacts.


Subject(s)
Atmosphere/chemistry , Particulate Matter/chemistry , Salts/analysis , Spectrum Analysis, Raman/methods , Bicarbonates/analysis , Carbonates/analysis , Nitrates/analysis , Sulfates/analysis
11.
J Phys Chem A ; 115(22): 5540-6, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21568331

ABSTRACT

Mg(2+), Na(+), and SO(4)(2-) are common ions in natural systems, and they are usually found in water bodies. Precipitation processes have great importance in environmental studies because they may be part of complex natural cycles; natural formation of atmospheric particulate matter is just one case. In this work, Na(2)Mg(SO(4))(2)·5H(2)O (konyaite), Na(6)Mg(SO(4))(4) (vanthoffite), and Na(12)Mg(7)(SO(4))(13)·15H(2)O (loeweite) were synthesized and their Raman spectra reported. By slow vaporization (at 20 °C and relative humidity of 60-70%), crystallization experiments were performed within small droplets (diameter ≤ 1-2 mm) of solutions containing MgSO(4) and Na(2)SO(4), and crystal formations were studied by Raman spectroscopy. Crystallization of Na(2)Mg(SO(4))(2)·4H(2)O (bloedite) was observed, and the formation of salt mixtures was confirmed by Raman spectra. Bloedite, konyaite, and loeweite, as well as Na(2)SO(4) and MgSO(4)·6H(2)O, were the components found to occur in different proportions. No crystallization of Na(6)Mg(SO(4))(4) (vanthoffite) was observed under the crystallization condition used in this study.

SELECTION OF CITATIONS
SEARCH DETAIL