Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Mol Genet Metab ; 142(2): 108486, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733639

Empagliflozin has been successfully repurposed for treating neutropenia and neutrophil dysfunction in patients with glycogen storage disease type 1b (GSD 1b), however, data in infants are missing. We report on efficacy and safety of empagliflozin in infants with GSD 1b. This is an international retrospective case series on 21 GSD 1b infants treated with empagliflozin (total treatment time 20.6 years). Before starting empagliflozin (at a median age of 8.1 months with a median dose of 0.3 mg/kg/day) 12 patients had clinical signs and symptoms of neutrophil dysfunction. Six of these previously symptomatic patients had no further neutropenia/neutrophil dysfunction-associated findings on empagliflozin. Eight patients had no signs and symptoms of neutropenia/neutrophil dysfunction before start and during empagliflozin treatment. One previously asymptomatic individual with a horseshoe kidney developed a central line infection with pyelonephritis and urosepsis during empagliflozin treatment. Of the 10 patients who were treated with G-CSF before starting empagliflozin, this was stopped in four and decreased in another four. Eleven individuals were never treated with G-CSF. While in 17 patients glucose homeostasis remained stable on empagliflozin, four showed glucose homeostasis instability in the introductory phase. In 17 patients, no other side effects were reported, while genital (n = 2) or oral (n = 1) candidiasis and skin infection (n = 1) were reported in the remaining four. Empagliflozin had a good effect on neutropenia/neutrophil dysfunction-related signs and symptoms and a favourable safety profile in infants with GSD 1b and therefore qualifies for further exploration as first line treatment.


Benzhydryl Compounds , Glucosides , Glycogen Storage Disease Type I , Neutropenia , Neutrophils , Humans , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/complications , Neutropenia/drug therapy , Male , Female , Infant , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/administration & dosage , Retrospective Studies , Neutrophils/drug effects , Glucosides/therapeutic use , Glucosides/pharmacology , Glucosides/administration & dosage , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Treatment Outcome , Granulocyte Colony-Stimulating Factor/therapeutic use
2.
Front Vet Sci ; 11: 1328293, 2024.
Article En | MEDLINE | ID: mdl-38601913

Brucellosis is a worldwide extended zoonosis caused by pathogens of the genus Brucella. While most B. abortus, B. melitensis, and B. suis biovars grow slowly in complex media, they multiply intensely in livestock genitals and placenta indicating high metabolic capacities. Mutant analyses in vitro and in infection models emphasize that erythritol (abundant in placenta and genitals) is a preferred substrate of brucellae, and suggest hexoses, pentoses, and gluconeogenic substrates use in host cells. While Brucella sugar and erythritol catabolic pathways are known, growth on 3-4 carbon substrates persists in Fbp- and GlpX-deleted mutants, the canonical gluconeogenic fructose 1,6-bisphosphate (F1,6bP) bisphosphatases. Exploiting the prototrophic and fast-growing properties of B. suis biovar 5, we show that gluconeogenesis requires fructose-bisphosphate aldolase (Fba); the existence of a novel broad substrate bisphosphatase (Bbp) active on sedoheptulose 1,7-bisphosphate (S1,7bP), F1,6bP, and other phosphorylated substrates; that Brucella Fbp unexpectedly acts on S1,7bP and F1,6bP; and that, while active in B. abortus and B. melitensis, GlpX is disabled in B. suis biovar 5. Thus, two Fba-dependent reactions (dihydroxyacetone-phosphate + glyceraldehyde 3-phosphate ⇌ F1,6bP; and dihydroxyacetone-phosphate + erythrose 4-phosphate ⇌ S1,7bP) can, respectively, yield fructose 6-phosphate and sedoheptulose 7-phosphate for classical gluconeogenesis and the Pentose Phosphate Shunt (PPS), the latter reaction opening a new gluconeogenic route. Since erythritol generates the PPS-intermediate erythrose 4-phosphate, and the Fba/Fbp-Bbp route predicts sedoheptulose 7-phosphate generation from erythrose 4-phosphate, we re-examined the erythritol connections with PPS. Growth on erythritol required transaldolase or the Fba/Fbp-Bbp pathway, strongly suggesting that Fba/Fbp-Bbp works as a PPS entry for both erythritol and gluconeogenic substrates in Brucella. We propose that, by increasing erythritol channeling into PPS through these peculiar routes, brucellae proliferate in livestock genitals and placenta in the high numbers that cause abortion and infertility, and make brucellosis highly contagious. These findings could be the basis for developing attenuated brucellosis vaccines safer in pregnant animals.

3.
Neurol Genet ; 10(2): e200146, 2024 Apr.
Article En | MEDLINE | ID: mdl-38617198

Background and Objectives: Hexokinase 1 (encoded by HK1) catalyzes the first step of glycolysis, the adenosine triphosphate-dependent phosphorylation of glucose to glucose-6-phosphate. Monoallelic HK1 variants causing a neurodevelopmental disorder (NDD) have been reported in 12 individuals. Methods: We investigated clinical phenotypes, brain MRIs, and the CSF of 15 previously unpublished individuals with monoallelic HK1 variants and an NDD phenotype. Results: All individuals had recurrent variants likely causing gain-of-function, representing mutational hot spots. Eight individuals (c.1370C>T) had a developmental and epileptic encephalopathy with infantile onset and virtually no development. Of the other 7 individuals (n = 6: c.1334C>T; n = 1: c.1240G>A), 3 adults showed a biphasic course of disease with a mild static encephalopathy since early childhood and an unanticipated progressive deterioration with, e.g., movement disorder, psychiatric disease, and stroke-like episodes, epilepsy, starting in adulthood. Individuals who clinically presented in the first months of life had (near)-normal initial neuroimaging and severe cerebral atrophy during follow-up. In older children and adults, we noted progressive involvement of basal ganglia including Leigh-like MRI patterns and cerebellar atrophy, with remarkable intraindividual variability. The CSF glucose and the CSF/blood glucose ratio were below the 5th percentile of normal in almost all CSF samples, while blood glucose was unremarkable. This biomarker profile resembles glucose transporter type 1 deficiency syndrome; however, in HK1-related NDD, CSF lactate was significantly increased in all patients resulting in a substantially different biomarker profile. Discussion: Genotype-phenotype correlations appear to exist for HK1 variants and can aid in counseling. A CSF biomarker profile with low glucose, low CSF/blood glucose, and high CSF lactate may point toward monoallelic HK1 variants causing an NDD. This can help in variant interpretation and may aid in understanding the pathomechanism. We hypothesize that progressive intoxication and/or ongoing energy deficiency lead to the clinical phenotypes and progressive neuroimaging findings.

4.
Mol Genet Metab ; 141(3): 108144, 2024 Mar.
Article En | MEDLINE | ID: mdl-38277989

Glycogen storage disease type Ib (GSD Ib, biallelic variants in SLC37A4) is a rare disorder of glycogen metabolism complicated by neutropenia/neutrophil dysfunction. Since 2019, the SGLT2-inhibitor empagliflozin has provided a mechanism-based treatment option for the symptoms caused by neutropenia/neutrophil dysfunction (e.g. mucosal lesions, inflammatory bowel disease). Because of the rarity of GSD Ib, the published evidence on safety and efficacy of empagliflozin is still limited and does not allow to develop evidence-based guidelines. Here, an international group of experts provides 14 best practice consensus treatment recommendations based on expert practice and review of the published evidence. We recommend to start empagliflozin in all GSD Ib individuals with clinical or laboratory signs related to neutropenia/neutrophil dysfunction with a dose of 0.3-0.4 mg/kg/d given as a single dose in the morning. Treatment can be started in an outpatient setting. The dose should be adapted to the weight and in case of inadequate clinical treatment response or side effects. We strongly recommend to pause empagliflozin immediately in case of threatening dehydration and before planned longer surgeries. Discontinuation of G-CSF therapy should be attempted in all individuals. If available, 1,5-AG should be monitored. Individuals who have previously not tolerated starches should be encouraged to make a new attempt to introduce starch in their diet after initiation of empagliflozin treatment. We advise to monitor certain safety and efficacy parameters and recommend continuous, alternatively frequent glucose measurements during the introduction of empagliflozin. We provide specific recommendations for special circumstances like pregnancy and liver transplantation.


Benzhydryl Compounds , Glucosides , Glycogen Storage Disease Type I , Neutropenia , Humans , Neutrophils/metabolism , Consensus , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Neutropenia/drug therapy , Neutropenia/etiology , Monosaccharide Transport Proteins , Antiporters/metabolism
5.
Cell Mol Life Sci ; 80(9): 259, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37594549

Neutropenia and neutrophil dysfunction in glycogen storage disease type 1b (GSD1b) and severe congenital neutropenia type 4 (SCN4), associated with deficiencies of the glucose-6-phosphate transporter (G6PT/SLC37A4) and the phosphatase G6PC3, respectively, are the result of the accumulation of 1,5-anhydroglucitol-6-phosphate in neutrophils. This is an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol in blood. 1,5-AG is presumed to be reabsorbed in the kidney by a sodium-dependent-transporter of uncertain identity, possibly SGLT4/SLC5A9 or SGLT5/SLC5A10. Lowering blood 1,5-AG with an SGLT2-inhibitor greatly improved neutrophil counts and function in G6PC3-deficient and GSD1b patients. Yet, this effect is most likely mediated indirectly, through the inhibition of the renal 1,5-AG transporter by glucose, when its concentration rises in the renal tubule following inhibition of SGLT2. To identify the 1,5-AG transporter, both human and mouse SGLT4 and SGLT5 were expressed in HEK293T cells and transport measurements were performed with radiolabelled compounds. We found that SGLT5 is a better carrier for 1,5-AG than for mannose, while the opposite is true for human SGLT4. Heterozygous variants in SGLT5, associated with a low level of blood 1,5-AG in humans cause a 50-100% reduction in 1,5-AG transport activity tested in model cell lines, indicating that SGLT5 is the predominant kidney 1,5-AG transporter. These and other findings led to the conclusion that (1) SGLT5 is the main renal transporter of 1,5-AG; (2) frequent heterozygous mutations (allelic frequency > 1%) in SGLT5 lower blood 1,5-AG, favourably influencing neutropenia in G6PC3 or G6PT deficiency; (3) the effect of SGLT2-inhibitors on blood 1,5-AG level is largely indirect; (4) specific SGLT5-inhibitors would be more efficient to treat these neutropenias than SGLT2-inhibitors.


Neutropenia , Animals , Humans , Mice , Antiporters , HEK293 Cells , Kidney , Membrane Transport Proteins , Monosaccharide Transport Proteins/genetics , Neutropenia/genetics , Sodium-Glucose Transporter 2/genetics
6.
Diagnostics (Basel) ; 13(10)2023 May 19.
Article En | MEDLINE | ID: mdl-37238286

Glycogen storage disease type Ib (GSD1b) is due to a defect in the glucose-6-phosphate transporter (G6PT) of the endoplasmic reticulum, which is encoded by the SLC37A4 gene. This transporter allows the glucose-6-phosphate that is made in the cytosol to cross the endoplasmic reticulum (ER) membrane and be hydrolyzed by glucose-6-phosphatase (G6PC1), a membrane enzyme whose catalytic site faces the lumen of the ER. Logically, G6PT deficiency causes the same metabolic symptoms (hepatorenal glycogenosis, lactic acidosis, hypoglycemia) as deficiency in G6PC1 (GSD1a). Unlike GSD1a, GSD1b is accompanied by low neutrophil counts and impaired neutrophil function, which is also observed, independently of any metabolic problem, in G6PC3 deficiency. Neutrophil dysfunction is, in both diseases, due to the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases, which is slowly formed in the cells from 1,5-anhydroglucitol (1,5-AG), a glucose analog that is normally present in blood. Healthy neutrophils prevent the accumulation of 1,5-AG6P due to its hydrolysis by G6PC3 following transport into the ER by G6PT. An understanding of this mechanism has led to a treatment aimed at lowering the concentration of 1,5-AG in blood by treating patients with inhibitors of SGLT2, which inhibits renal glucose reabsorption. The enhanced urinary excretion of glucose inhibits the 1,5-AG transporter, SGLT5, causing a substantial decrease in the concentration of this polyol in blood, an increase in neutrophil counts and function and a remarkable improvement in neutropenia-associated clinical signs and symptoms.

7.
Mol Genet Metab ; 140(3): 107712, 2023 Nov.
Article En | MEDLINE | ID: mdl-38353183

Glycogen storage disease type Ib (GSD1b) and G6PC3-deficiency are rare autosomal recessive diseases caused by inactivating mutations in SLC37A4 (coding for G6PT) and G6PC3, respectively. Both diseases are characterized by neutropenia and neutrophil dysfunction due to the intracellular accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases. We recently showed that the use of SGLT2 inhibitor therapy to reduce tubular reabsorption of its precursor, 1,5-anhydroglucitol (1,5-AG), a glucose analog present in blood, successfully restored the neutropenia and neutrophil function in G6PC3-deficient and GSD1b patients. The intra-individual variability of response to the treatment and the need to adjust the dose during treatment, especially in pediatric populations, can only be efficiently optimized if the concentration of 1,5-AG in blood is monitored during treatment, together with the patients' clinical signs and symptoms. Monitoring the 1,5-AG levels would be greatly simplified if it could be performed on dry blood spots (DBS) which are easy to collect, store and transport. The challenge is to know if a suitable method can be developed to perform accurate and reproducible assays for 1,5-AG using DBS. Here, we describe and validate an assay that quantifies 1,5-AG in DBS using isotopic dilution quantitation by LC-MS/MS that should greatly facilitate patients' follow-up. 1,5-AG levels measured in plasma and DBS give comparable values. This assay was used to monitor the levels of 1,5-AG in DBS from 3 G6PC3-deficient and 6 GSD1b patients during treatment with SGLT2 inhibitors. We recommend this approach to verify the adequate therapeutical response and compliance to the treatment in G6PC3-deficient and GSD1b patients treated with SGLT2 inhibitors.


Deoxyglucose , Glycogen Storage Disease Type I , Neutropenia , Sodium-Glucose Transporter 2 Inhibitors , Child , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/complications , Neutropenia/genetics , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Phosphoric Monoester Hydrolases , Monosaccharide Transport Proteins , Antiporters
8.
Front Pediatr ; 10: 1071464, 2022.
Article En | MEDLINE | ID: mdl-36507137

Background: Glycogen storage disease type 1b (GSD1b) is an ultra-rare autosomal recessive disorder, caused by mutations in SLC37A4 gene. Affected patients present with episodes of fasting hypoglycemia and lactic acidosis, hepatomegaly, growth retardation, hyperlipidemia and renal impairment. In addition, patients present neutropenia, neutrophil dysfunction and oral, and skin infections as well as a significant predisposition to develop inflammatory bowel disease (IBD). Low neutrophil counts and function is related to the toxic accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P). Recently, several reports have shown that off-label treatment with empagliflozin (EMPA), an inhibitor of the renal glucose transporter SGLT2, decreased blood 1,5-anhydroglucitol (1,5-AG), and neutrophil 1,5-AG6P, thus resulting in a new therapeutic option for neutropenia and neutrophil dysfunction in patients. Methods: Off-label treatment with EMPA was established in two GSD1b patients after signed informed consent. The patients were followed clinically. We monitored neutrophil counts and function, 1,5-AG levels in plasma and its renal clearance before and during EMPA treatment. Results: A 17 year-old girl who had long standing oral ulcers and developed IBD, requiring systemic steroid and regular granulocyte colony-stimulating factor (GCSF) therapy and an 8 year-old boy who had steady non healing oral lesions were treated with empagliflozin during 18-24 months. Treatment led to increase of neutrophil counts and function with substantial clinical improvement. This included remission of IBD in the first patient which allowed to discontinue both GCSF and steroid therapy and resolution of oral lesions in both patients. The concentration of 1,5-AG in blood was greatly decreased within two weeks of treatment and remained stable thereafter. Conclusions: Repurposing of empagliflozin to treat neutropenia in two GSD1b patients was safe and resulted in the urinary excretion of 1,5-AG, the normalization of neutrophil function, and a remarkable improvement of neutropenia-related clinical traits. We showed for the first time that empagliflozin increases concomitantly the renal clearance of both 1,5-anhydroglucitol and glucose in GSD1b patients.

9.
Cureus ; 14(7): e27264, 2022 Jul.
Article En | MEDLINE | ID: mdl-36039216

Glycogen storage disease type Ib (GSD-Ib) is an autosomal-recessive inborn error of carbohydrate metabolism, where severe fasting hypoglycemia is associated (among other manifestations) with neutropenia and neutrophil dysfunction (predisposing to recurrent, potentially life-threatening infections) and inflammatory bowel disease (IBD). Granulocyte colony-stimulating factors (G-CSFs) are commonly used for its treatment. Although they have improved the prognosis of the disease, these medicines have also led to concerns about complications associated with their use (namely splenomegaly and hematopoietic malignancies), not to mention their increased cost. Recently, a novel new treatment for neutropenia associated with this disease was discovered. It was found that sodium-glucose cotransporter type 2 (SGLT-2) inhibitors, usually used for the treatment of diabetes mellitus, can ameliorate both neutropenia and IBD-related symptoms and improve the quality of life in patients suffering from these diseases. They do it by inhibiting the renal reabsorption of 1,5-anhydroglucitol, a dietary analog of glucose, whose accumulation due to the specific enzyme deficiency leads to toxic effects on granulocytes. Herein we report the treatment of an adult patient suffering from GSD-Ib with empagliflozin, an SGLT-2 inhibitor.

10.
Cell Mol Life Sci ; 79(8): 421, 2022 Jul 14.
Article En | MEDLINE | ID: mdl-35834009

Transaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination. We also tested whether sugars and sugar phosphates could serve as alternative amino group acceptors for these cytosolic enzymes. Each of the six aminotransferases reacted appreciably with at least three of the alternative amino acid substrates in vitro, albeit at usually feeble rates. Reactions with L-Thr, L-Arg, L-Lys and L-Asn were consistently very slow-a bias explained in part by the structural differences between these amino acids and the preferred substrates of the transaminases. On the other hand, L-His and L-Trp reacted more efficiently, particularly with GTK (glutamine transaminase K; also known as KYAT1). This points towards a role of GTK in the salvage of L-Trp (in cooperation with ω-amidase and possibly with the cytosolic malate dehydrogenase, MDH1, which efficiently reduced the product of L-Trp transamination). Finally, the transaminases were extremely ineffective at utilizing sugars and sugar derivatives, with the exception of the glycolytic intermediate dihydroxyacetone phosphate, which was slowly but appreciably transaminated by some of the enzymes to yield serinol phosphate. Evidence for the formation of this compound in a human cell line was also obtained. We discuss the biological and evolutionary implications of our results.


Amino Acids , Transaminases , Cytosol/metabolism , Humans , Kinetics , Substrate Specificity , Sugars , Transaminases/metabolism
11.
J Inherit Metab Dis ; 45(4): 759-768, 2022 07.
Article En | MEDLINE | ID: mdl-35506446

Neutropenia and neutrophil dysfunction found in deficiencies in G6PC3 and in the glucose-6-phosphate transporter (G6PT/SLC37A4) are due to accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol present in blood. Lowering blood 1,5-AG with an SGLT2 inhibitor greatly improved neutrophil counts and function in G6PC3-deficient mice and in patients with G6PT-deficiency. We evaluate this treatment in two G6PC3-deficient children. While neutropenia was severe in one child (PT1), which was dependent on granulocyte cololony-stimulating factor (GCSF), it was significantly milder in the other one (PT2), which had low blood 1,5-AG levels and only required GCSF during severe infections. Treatment with the SGLT2-inhibitor empagliflozin decreased 1,5-AG in blood and 1,5-AG6P in neutrophils and improved (PT1) or normalized (PT2) neutrophil counts, allowing to stop GCSF. On empagliflozin, both children remained infection-free (>1 year - PT2; >2 years - PT1) and no side effects were reported. Remarkably, sequencing of SGLT5, the gene encoding the putative renal transporter for 1,5-AG, disclosed a rare heterozygous missense mutation in PT2, replacing the extremely conserved Arg401 by a histidine. The higher urinary clearance of 1,5-AG explains the more benign neutropenia and the outstanding response to empagliflozin treatment found in this child. Our data shows that SGLT2 inhibitors are an excellent alternative to treat the neutropenia present in G6PC3-deficiency.


Glycogen Storage Disease Type I , Neutropenia , Sodium-Glucose Transport Proteins/metabolism , Animals , Antiporters/genetics , Benzhydryl Compounds , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Glucosides/therapeutic use , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Humans , Mice , Monosaccharide Transport Proteins/genetics , Mutation , Neutropenia/drug therapy , Neutropenia/genetics , Phosphoric Monoester Hydrolases/genetics
12.
Mol Genet Metab Rep ; 29: 100813, 2021 Dec.
Article En | MEDLINE | ID: mdl-34712576

Glycogen Storage Disease type 1b (GSDIb) is a genetic disorder with long term severe complications. Accumulation of the glucose analog 1,5-anhydroglucitol-6-phosphate (1,5AG6P) in neutrophils inhibits the phosphorylation of glucose in these cells, causing neutropenia and neutrophil dysfunctions. This condition leads to serious infections and inflammatory bowel disease (IBD) in GSDIb patients. We show here that dapagliflozin, an inhibitor of the renal sodium-glucose co-transporter-2 (SGLT2), improves neutrophil function in an inducible mouse model of GSDIb by reducing 1,5AG6P accumulation in myeloid cells.

13.
Ital J Pediatr ; 47(1): 149, 2021 Jul 02.
Article En | MEDLINE | ID: mdl-34215305

BACKGROUND: Besides major clinical/biochemical features, neutropenia and inflammatory bowel disease (IBD) constitute common complications of Glycogen storage disease type Ib (GSD Ib). However, their management is still challenging. Although previous reports have shown benefit of empagliflozin administration on neutropenia, no follow-up data on bowel (macro/microscopic) morphology are available. We herein present for the first time longitudinal assessment of bowel morphology in a GSD Ib child suffering from Crohn disease-like enterocolitis treated with empagliflozin. CASE PRESENTATION: A 14-year-old boy with GSD Ib and severe IBD was (off-label) treated with empagliflozin (20 mg/day) after informed oral and written consent was obtained from the patient's parents. No adverse events were noted. Clinical symptoms and stool frequency improved within the first week of treatment. Pediatric Crohn disease activity index (PCDAI) normalised within the first month of treatment. Abdomen magnetic resonance imaging (MRI) performed 3 months after treatment initiation showed dramatic decrease in disease activity and length. Similar findings were reported on histology at 5.5 months. At 7.5 months hemoglobin levels normalised and fecal calprotectin almost normalised. Improved neutrophil count, metabolic control and quality of life were also noted. G-CSF dose was decreased by 33% and the patient was partly weaned from tube feeding. CONCLUSIONS: This is the first report presenting extensive gastrointestinal morphology follow-up in a GSD Ib patient receiving empagliflozin. The present case suggests that empagliflozin can be safe and effective in inducing IBD remission in GSD Ib patients and can even postpone surgery. Future studies are required to confirm its effect over time and assess its benefit in various disease stages. The development of an international collaborating networks for systematic data collection is worthy.


Benzhydryl Compounds/therapeutic use , Crohn Disease/drug therapy , Enterocolitis/drug therapy , Glucosides/therapeutic use , Glycogen Storage Disease Type I/complications , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Adolescent , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Male , Remission Induction
14.
Am J Hum Genet ; 108(6): 1151-1160, 2021 06 03.
Article En | MEDLINE | ID: mdl-33979636

We describe a genetic syndrome due to PGM2L1 deficiency. PGM2 and PGM2L1 make hexose-bisphosphates, like glucose-1,6-bisphosphate, which are indispensable cofactors for sugar phosphomutases. These enzymes form the hexose-1-phosphates crucial for NDP-sugars synthesis and ensuing glycosylation reactions. While PGM2 has a wide tissue distribution, PGM2L1 is highly expressed in the brain, accounting for the elevated concentrations of glucose-1,6-bisphosphate found there. Four individuals (three females and one male aged between 2 and 7.5 years) with bi-allelic inactivating mutations of PGM2L1 were identified by exome sequencing. All four had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals. Analysis of the children's fibroblasts showed that glucose-1,6-bisphosphate and other sugar bisphosphates were markedly reduced but still present at concentrations able to stimulate phosphomutases maximally. Hence, the concentrations of NDP-sugars and glycosylation of the heavily glycosylated protein LAMP2 were normal. Consistent with this, serum transferrin was normally glycosylated in affected individuals. PGM2L1 deficiency does not appear to be a glycosylation defect, but the clinical features observed in this neurodevelopmental disorder point toward an important but still unknown role of glucose-1,6-bisphosphate or other sugar bisphosphates in brain metabolism.


Glucose-6-Phosphate/analogs & derivatives , Mutation , Neurodevelopmental Disorders/pathology , Phosphotransferases/genetics , Alleles , Child , Child, Preschool , Female , Glucose-6-Phosphate/biosynthesis , Glycosylation , Humans , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Pedigree
15.
J Inherit Metab Dis ; 44(5): 1215-1225, 2021 09.
Article En | MEDLINE | ID: mdl-33973257

Ethylmalonic acid (EMA) is a major and potentially cytotoxic metabolite associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a condition whose status as a disease is uncertain. Unexplained high EMA is observed in some individuals with complex neurological symptoms, who carry the SCAD gene (ACADS) variants, c.625G>A and c.511C>T. The variants have a high allele frequency in the general population, but are significantly overrepresented in individuals with elevated EMA. This has led to the idea that these variants need to be associated with variants in other genes to cause hyperexcretion of ethylmalonic acid and possibly a diseased state. Ethylmalonyl-CoA decarboxylase (ECHDC1) has been described and characterized as an EMA metabolite repair enzyme, however, its clinical relevance has never been investigated. In this study, we sequenced the ECHDC1 gene (ECHDC1) in 82 individuals, who were reported with unexplained high EMA levels due to the presence of the common ACADS variants only. Three individuals with ACADS c.625G>A variants were found to be heterozygous for ECHDC1 loss-of-function variants. Knockdown experiments of ECHDC1, in healthy human cells with different ACADS c.625G>A genotypes, showed that ECHDC1 haploinsufficiency and homozygosity for the ACADS c.625G>A variant had a synergistic effect on cellular EMA excretion. This study reports the first cases of ECHDC1 gene defects in humans and suggests that ECHDC1 may be involved in elevated EMA excretion in only a small group of individuals with the common ACADS variants. However, a direct link between ECHDC1/ACADS deficiency, EMA and disease could not be proven.


Acyl-CoA Dehydrogenase/deficiency , Genetic Variation , Lipid Metabolism, Inborn Errors/genetics , Malonates/metabolism , Peroxisomal Bifunctional Enzyme/genetics , Acyl-CoA Dehydrogenase/genetics , Alleles , Gene Frequency , Genotype , HEK293 Cells , Humans , Multiple Acyl Coenzyme A Dehydrogenase Deficiency
16.
J Biol Chem ; 296: 100699, 2021.
Article En | MEDLINE | ID: mdl-33895133

N-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form. The aldolase that initiates Neu5Ac metabolism in E. coli, NanA, has been reported to act on the alpha-anomer. Surprisingly, when we performed this reaction at pH 6 to minimize spontaneous anomerization, we found NanA and its human homolog NPL preferentially metabolize the open form of this substrate. We tested whether the E. coli Neu5Ac anomerase NanM could promote turnover, finding it stimulated the utilization of both beta and alpha-anomers by NanA in vitro. However, NanM is localized in the periplasmic space and cannot facilitate Neu5Ac metabolism by NanA in the cytoplasm in vivo. We discovered that YhcH, a cytoplasmic protein encoded by many Neu5Ac catabolic operons and belonging to a protein family of unknown function (DUF386), also facilitated Neu5Ac utilization by NanA and NPL and displayed Neu5Ac anomerase activity in vitro. YhcH contains Zn, and its accelerating effect on the aldolase reaction was inhibited by metal chelators. Remarkably, several transition metals accelerated Neu5Ac anomerization in the absence of enzyme. Experiments with E. coli mutants indicated that YhcH expression provides a selective advantage for growth on Neu5Ac. In conclusion, YhcH plays the unprecedented role of providing an aldolase with the preferred unstable open form of its substrate.


Fructose-Bisphosphate Aldolase/metabolism , N-Acetylneuraminic Acid/metabolism , Escherichia coli/enzymology , Fructose-Bisphosphate Aldolase/chemistry , Models, Molecular , N-Acetylneuraminic Acid/chemistry , Periplasm/metabolism , Protein Conformation , Protein Transport , Stereoisomerism
17.
J Clin Immunol ; 41(5): 958-966, 2021 07.
Article En | MEDLINE | ID: mdl-33534079

Phosphoglucomutase 3 (PGM3) deficiency is a rare congenital disorder of glycosylation. Most of patients with autosomal recessive hypomorphic mutations in PGM3 encoding for phosphoglucomutase 3 present with eczema, skin and lung infections, elevated serum IgE, as well as neurological and skeletal features. A few PGM3-deficient patients suffer from a more severe disease with nearly absent T cells and severe skeletal dysplasia. We performed targeted next-generation sequencing on two kindred to identify the underlying genetic etiology of a severe combined immunodeficiency with developmental defect. We report here two novel homozygous missense variants (p.Gly359Asp and p.Met423Thr) in PGM3 identified in three patients from two unrelated kindreds with severe combined immunodeficiency, neurological impairment, and skeletal dysplasia. Both variants segregated with the disease in the two families. They were predicted to be deleterious by in silico analysis. PGM3 enzymatic activity was found to be severely impaired in primary fibroblasts and Epstein-Barr virus immortalized B cells from the kindred carrying the p.Met423Thr variant. Our findings support the pathogenicity of these two novel variants in severe PGM3 deficiency.


Abnormalities, Multiple/genetics , Bone Diseases, Developmental/genetics , Limb Deformities, Congenital/genetics , Nervous System Diseases/genetics , Phosphoglucomutase/genetics , Severe Combined Immunodeficiency/genetics , Child, Preschool , Face/abnormalities , Female , Humans , Infant , Infant, Newborn , Male
18.
Blood ; 136(9): 1033-1043, 2020 08 27.
Article En | MEDLINE | ID: mdl-32294159

Neutropenia and neutrophil dysfunction cause serious infections and inflammatory bowel disease in glycogen storage disease type Ib (GSD-Ib). Our discovery that accumulating 1,5-anhydroglucitol-6-phosphate (1,5AG6P) caused neutropenia in a glucose-6-phosphatase 3 (G6PC3)-deficient mouse model and in 2 rare diseases (GSD-Ib and G6PC3 deficiency) led us to repurpose the widely used antidiabetic drug empagliflozin, an inhibitor of the renal glucose cotransporter sodium glucose cotransporter 2 (SGLT2). Off-label use of empagliflozin in 4 GSD-Ib patients with incomplete response to granulocyte colony-stimulating factor (GCSF) treatment decreased serum 1,5AG and neutrophil 1,5AG6P levels within 1 month. Clinically, symptoms of frequent infections, mucosal lesions, and inflammatory bowel disease resolved, and no symptomatic hypoglycemia was observed. GCSF could be discontinued in 2 patients and tapered by 57% and 81%, respectively, in the other 2. The fluctuating neutrophil numbers in all patients were increased and stabilized. We further demonstrated improved neutrophil function: normal oxidative burst (in 3 of 3 patients tested), corrected protein glycosylation (2 of 2), and normal neutrophil chemotaxis (1 of 1), and bactericidal activity (1 of 1) under treatment. In summary, the glucose-lowering SGLT2 inhibitor empagliflozin, used for type 2 diabetes, was successfully repurposed for treating neutropenia and neutrophil dysfunction in the rare inherited metabolic disorder GSD-Ib without causing symptomatic hypoglycemia. We ascribe this to an improvement in neutrophil function resulting from the reduction of the intracellular concentration of 1,5AG6P.


Benzhydryl Compounds/therapeutic use , Glucosides/therapeutic use , Glycogen Storage Disease Type I/complications , Hexosephosphates/blood , Neutropenia/drug therapy , Neutrophils/pathology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Benzhydryl Compounds/adverse effects , Blood Glucose/analysis , Chemotaxis, Leukocyte/drug effects , Child, Preschool , Drug Repositioning , Drug Resistance , Female , Glucosides/adverse effects , Glycogen Storage Disease Type I/blood , Glycogen Storage Disease Type I/immunology , Granulocyte Colony-Stimulating Factor/therapeutic use , Granulocytes/chemistry , Humans , Infant, Newborn , Lysosomal-Associated Membrane Protein 2/blood , Male , Neutropenia/blood , Off-Label Use , Respiratory Burst/drug effects , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Young Adult
19.
Anal Biochem ; 593: 113595, 2020 03 15.
Article En | MEDLINE | ID: mdl-31987861

Steady-state enzyme kinetics typically relies on the measurement of 'initial rates', obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or 'lag phase'. This behavior needs to be interpreted by the experimentalists. To assist interpretation, this article analyzes the many reasons why, during an enzyme assay, the observed rate can be slow in the beginning and then progressively accelerate. The possible causes range from trivial artifacts to instances in which deeper mechanistic or biophysical factors are at play. We provide practical examples for most of these causes, based firstly on experiments conducted with ornithine δ-aminotransferase and with other pyridoxal-phosphate dependent enzymes that have been studied in our laboratory. On the side to this survey, we provide evidence that the product of the ornithine δ-aminotransferase reaction, glutamate 5-semialdehyde, cyclizes spontaneously to pyrroline 5-carboxylate with a rate constant greater than 3 s-1.


Enzyme Assays/methods , Enzymes/chemistry , Artifacts , Kinetics , Ornithine-Oxo-Acid Transaminase/chemistry , Substrate Specificity
20.
Trends Biochem Sci ; 45(3): 228-243, 2020 03.
Article En | MEDLINE | ID: mdl-31473074

Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.


Enzymes/metabolism , Animals , Glycolysis , Humans , Mice
...