Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 367(3): 551-563, 2018 12.
Article in English | MEDLINE | ID: mdl-30275151

ABSTRACT

Opioid-based therapies remain a mainstay for chronic pain management, but unwanted side effects limit therapeutic use. We compared efficacies of brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase (FAAH) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Paclitaxel produced mechanical and cold allodynia without altering nestlet shredding or marble burying behaviors. We compared FAAH inhibitors that differ in their ability to penetrate the central nervous system for antiallodynic efficacy, pharmacological specificity, and synergism with the opioid analgesic morphine. (3'-(aminocarbonyl)[1,1'-biphenyl]- 3-yl)-cyclohexylcarbamate (URB597), a brain-permeant FAAH inhibitor, attenuated paclitaxel-induced allodynia via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) mechanisms. URB937, a brain-impermeant FAAH inhibitor, suppressed paclitaxel-induced allodynia through a CB1 mechanism only. 5-[4-(4-cyano-1-butyn-1-yl)phenyl]-1-(2,4-dichlorophenyl)-N-(1,1-dioxido-4-thiomorpholinyl)-4-methyl-1H-pyrazole-3-carboxamide (AM6545), a peripherally restricted CB1 antagonist, fully reversed the antiallodynic efficacy of N-cyclohexyl-carbamic acid, 3'-(aminocarbonyl)-6-hydroxy[1,1'- biphenyl]-3-yl ester (URB937) but only partially reversed that of URB597. Thus, URB937 suppressed paclitaxel-induced allodynia through a mechanism that was dependent upon peripheral CB1 receptor activation only. Antiallodynic effects of both FAAH inhibitors were reversed by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). Antiallodynic effects of URB597, but not URB937, were reversed by 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630). Isobolographic analysis revealed synergistic interactions between morphine and either URB597 or URB937 in reducing paclitaxel-induced allodynia. A leftward shift in the dose-response curve of morphine antinociception was observed when morphine was coadministered with either URB597 or URB937, consistent with morphine sparing. However, neither URB937 nor URB597 enhanced morphine-induced deficits in colonic transit. Thus, our findings suggest that FAAH inhibition may represent a therapeutic avenue to reduce the overall amount of opioid needed for treating neuropathic pain with potential to reduce unwanted side effects that accompany opioid administration.


Subject(s)
Amidohydrolases/metabolism , Analgesics, Opioid/pharmacology , Antineoplastic Agents/adverse effects , Brain/drug effects , Gastrointestinal Transit/drug effects , Morphine/pharmacology , Nociception/drug effects , Animals , Arachidonic Acids/pharmacology , Benzamides/pharmacology , Brain/metabolism , Cannabinoids/pharmacology , Carbamates/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Morpholines/pharmacology , Neuralgia/drug therapy , Neuralgia/metabolism , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
2.
J Clin Invest ; 127(11): 4148-4162, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29035280

ABSTRACT

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.


Subject(s)
Adipocytes/metabolism , Energy Metabolism , Macrophages/physiology , Receptor, Cannabinoid, CB1/physiology , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Body Weight , Energy Intake , Homeostasis , Macrophage Activation , Male , Mice, Inbred C57BL , Mice, Knockout , Obesity/immunology , Obesity/metabolism , Organ Specificity , Transcriptome
3.
Br J Pharmacol ; 174(15): 2545-2562, 2017 08.
Article in English | MEDLINE | ID: mdl-28516479

ABSTRACT

BACKGROUND AND PURPOSE: CB1 receptor signalling is canonically mediated through inhibitory Gαi proteins, but occurs through other G proteins under some circumstances, Gαs being the most characterized secondary pathway. Determinants of this signalling switch identified to date include Gαi blockade, CB1 /D2 receptor co-stimulation, CB1 agonist class and cell background. Hence, we examined the effects of receptor number and different ligands on CB1 receptor signalling. EXPERIMENTAL APPROACH: CB1 receptors were expressed in HEK cells at different levels, and signalling characterized for cAMP by real-time BRET biosensor -CAMYEL - and for phospho-ERK by AlphaScreen. Homogenate and whole cell radioligand binding assays were performed to characterize AM6544, a novel irreversible CB1 receptor antagonist. KEY RESULTS: In HEK cells expressing high levels of CB1 receptors, agonist treatment stimulated cAMP, a response not known to be mediated by receptor number. Δ9 -THC and BAY59-3074 increased cAMP only in high-expressing cells pretreated with pertussis toxin, and agonists demonstrated more diverse signalling profiles in the stimulatory pathway than the canonical inhibitory pathway. Pharmacological CB1 receptor knockdown and Gαi 1 supplementation restored canonical Gαi signalling to high-expressing cells. Constitutive signalling in both low- and high-expressing cells was Gαi -mediated. CONCLUSION AND IMPLICATIONS: CB1 receptor coupling to opposing G proteins is determined by both receptor and G protein expression levels, which underpins a mechanism for non-canonical signalling in a fashion consistent with Gαs signalling. CB1 receptors mediate opposite consequences in endpoints such as tumour viability depending on expression levels; our results may help to explain such effects at the level of G protein coupling.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction , Cells, Cultured , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Ligands , Receptor, Cannabinoid, CB1/agonists , Structure-Activity Relationship
4.
Psychopharmacology (Berl) ; 234(6): 1029-1043, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28144708

ABSTRACT

RATIONALE: Cannabinoid CB1 inverse agonists hold therapeutic promise as appetite suppressants but have produced suicidal behaviors among a small subpopulation in clinical trials. Anatomical and pharmacological evidence implicate the 5HT1A serotonin receptor in suicide in humans and impulsivity in humans and animals. OBJECTIVE: The objective of the study is to assess whether 5HT1A blockade is necessary for CB1 ligands to produce impulsivity. METHODS: Sprague Dawley rats were administered the CB1 inverse agonist AM 251, the CB1 antagonist AM 6527, or the peripherally restricted antagonist AM 6545, with or without pretreatment with the 5HT1A antagonist WAY 100,635 (WAY) on the paced fixed consecutive number (FCN) task, which measures choice to terminate a chain of responses prematurely. As FCN is sensitive to changes in time perception, which have been demonstrated with CB1 blockade, a novel variable consecutive number task with discriminative stimulus (VCN-S D ) was also performed and proposed to be less sensitive to changes in timing. RESULTS: Pretreatment with WAY enabled mild but significant reductions in FCN accuracy for AM 251 and AM 6527. No effects were found for AM 6545. On the VCN-S D task, substantial impairments were found for the combination of WAY and AM 251. CONCLUSIONS: AM 251, but not the antagonists AM 6527 or AM 6545, produced impulsivity only following systemic 5HT1A blockade. Although preliminary, the results may indicate that disrupted serotonin signaling produces a vulnerability to undesirable effects of CB1 inverse agonists, which is not evident in the general population. Furthermore, neutral CB1 antagonists do not produce this effect and therefore may have greater safety.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Impulsive Behavior/drug effects , Receptor, Cannabinoid, CB1/drug effects , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Animals , Appetite Depressants , Choice Behavior/drug effects , Drug Inverse Agonism , Male , Morpholines/pharmacology , Piperazines/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Serotonin, 5-HT1A
5.
J Psychopharmacol ; 30(5): 482-91, 2016 05.
Article in English | MEDLINE | ID: mdl-27005309

ABSTRACT

Cannabinoid CB1 antagonists are widely known to reduce motivation for food, but it is not known whether they induce satiety or reduce reward value of food. It may therefore be necessary to compare effects of altered satiety and reward food value in the same appetitive task, and determine whether CB1 antagonism produces a behavior pattern similar to either, both, or neither. A fine-grained analysis of fixed-ratio 10 (FR10) responding for palatable food initially included number and duration of, and between, all lever presses and food tray entries in order to differentiate the pattern of suppression of prefeeding from that caused by reducing the reward value of the pellets with quinine. Discriminant function analysis then determined that these manipulations were best differentiated by effects on tray entries, pellet retrieval latencies, and time of the first response. At 0.5 mg/kg, AM 6527 produced similar effects to reducing reward value, but at 1.0 and 4.0 mg/kg, effects were more similar to those when animals were satiated. We conclude that AM 6527 both reduced reward value and enhanced satiety, but as dose increased, effects on satiety became much more prominent. These findings contribute to knowledge about the behavioral processes affected by CB1 antagonism.


Subject(s)
Behavior, Animal/drug effects , Cannabinoid Receptor Antagonists/pharmacology , Feeding Behavior/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Male , Motivation/drug effects , Pyrazoles/pharmacology , Quinine/pharmacology , Rats , Rats, Sprague-Dawley , Reward
6.
Biochim Biophys Acta ; 1858(2): 344-53, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26607010

ABSTRACT

Non-genomic membrane effects of estrogens are of great interest because of the diverse biological activities they may elicit. To further our understanding of the molecular features of the interaction between estrogenic hormones and membrane bilayers, we have determined the preferred orientation, location, and dynamic properties of 17ß-estradiol (E2) in two different phospholipid membrane environments using (2)H-NMR and 2D (1)H-(13)C HSQC in conjunction with molecular dynamics simulations. Unequivocal spectral assignments to specific (2)H labels were made possible by synthesizing six selectively deuterated E2 molecules. The data allow us to conclude that the E2 molecule adopts a nearly "horizontal" orientation in the membrane bilayer with its long axis essentially perpendicular to the lipid acyl-chains. All four rings of the E2 molecule are located near the membrane interface, allowing both the E2 3-OH and the 17ß-OH groups to engage in hydrogen bonding and electrostatic interactions with polar phospholipid groups. The findings augment our knowledge of the molecular interactions between E2 and membrane bilayer and highlight the asymmetric nature of the dynamic motions of the rigid E2 molecule in a membrane environment.


Subject(s)
Estradiol/chemistry , Membranes, Artificial , Molecular Dynamics Simulation
7.
Clin Pharmacol Ther ; 97(6): 553-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25801236

ABSTRACT

The endocannabinoid system comprises the two well characterized Gi/o -protein coupled receptors (cannabinoid receptor 1 (CB1) and CB2), their endogenous lipid ligands, and the enzymes involved in their biosynthesis and biotransformation. Drug discovery efforts relating to the endocannabinoid system have been focused mainly on the two cannabinoid receptors and the two endocannabinoid deactivating enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). This review provides an overview of cannabinergic agents used in drug research and those being explored clinically.


Subject(s)
Cannabinoids/therapeutic use , Amidohydrolases/antagonists & inhibitors , Chemistry, Pharmaceutical , Drug Discovery , Humans , Monoacylglycerol Lipases/antagonists & inhibitors , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/physiology
8.
Proc Natl Acad Sci U S A ; 112(1): 285-90, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535367

ABSTRACT

Glucocorticoids are known to promote the development of metabolic syndrome through the modulation of both feeding pathways and metabolic processes; however, the precise mechanisms of these effects are not well-understood. Recent evidence shows that glucocorticoids possess the ability to increase endocannabinoid signaling, which is known to regulate appetite, energy balance, and metabolic processes through both central and peripheral pathways. The aim of this study was to determine the role of endocannabinoid signaling in glucocorticoid-mediated obesity and metabolic syndrome. Using a mouse model of excess corticosterone exposure, we found that the ability of glucocorticoids to increase adiposity, weight gain, hormonal dysregulation, hepatic steatosis, and dyslipidemia was reduced or reversed in mice lacking the cannabinoid CB1 receptor as well as mice treated with the global CB1 receptor antagonist AM251. Similarly, a neutral, peripherally restricted CB1 receptor antagonist (AM6545) was able to attenuate the metabolic phenotype caused by chronic corticosterone, suggesting a peripheral mechanism for these effects. Biochemical analyses showed that chronic excess glucocorticoid exposure produced a significant increase in hepatic and circulating levels of the endocannabinoid anandamide, whereas no effect was observed in the hypothalamus. To test the role of the liver, specific and exclusive deletion of hepatic CB1 receptor resulted in a rescue of the dyslipidemic effects of glucocorticoid exposure, while not affecting the obesity phenotype or the elevations in insulin and leptin. Together, these data indicate that glucocorticoids recruit peripheral endocannabinoid signaling to promote metabolic dysregulation, with hepatic endocannabinoid signaling being especially important for changes in lipid metabolism.


Subject(s)
Endocannabinoids/metabolism , Glucocorticoids/adverse effects , Metabolic Syndrome/chemically induced , Metabolic Syndrome/metabolism , Animals , Corticosterone/pharmacology , Dyslipidemias/metabolism , Endocannabinoids/administration & dosage , Endocannabinoids/pharmacology , Liver/metabolism , Metabolic Syndrome/pathology , Mice, Inbred C57BL , Obesity/metabolism , Organ Specificity/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/drug effects
9.
PLoS One ; 9(6): e99320, 2014.
Article in English | MEDLINE | ID: mdl-24937131

ABSTRACT

Behavioral activation is a fundamental feature of motivation, and organisms frequently make effort-related decisions based upon evaluations of reinforcement value and response costs. Furthermore, people with major depression and other disorders often show anergia, psychomotor retardation, fatigue, and alterations in effort-related decision making. Tasks measuring effort-based decision making can be used as animal models of the motivational symptoms of depression, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine. Tetrabenazine induces depressive symptoms in humans, and also preferentially depletes dopamine (DA). Rats were assessed using a concurrent progressive ratio (PROG)/chow feeding task, in which they can either lever press on a PROG schedule for preferred high-carbohydrate food, or approach and consume a less-preferred lab chow that is freely available in the chamber. Previous work has shown that the DA antagonist haloperidol reduced PROG work output on this task, but did not reduce chow intake, effects that differed substantially from those of reinforcer devaluation or appetite suppressant drugs. The present work demonstrated that tetrabenazine produced an effort-related shift in responding on the PROG/chow procedure, reducing lever presses, highest ratio achieved and time spent responding, but not reducing chow intake. Similar effects were produced by administration of the subtype selective DA antagonists ecopipam (D1) and eticlopride (D2), but not by the cannabinoid CB1 receptor neutral antagonist and putative appetite suppressant AM 4413, which suppressed both lever pressing and chow intake. The adenosine A2A antagonist MSX-3, the antidepressant and catecholamine uptake inhibitor bupropion, and the MAO-B inhibitor deprenyl, all reversed the impairments induced by tetrabenazine. This work demonstrates the potential utility of the PROG/chow procedure as a rodent model of the effort-related deficits observed in depressed patients.


Subject(s)
Antidepressive Agents/pharmacology , Choice Behavior/drug effects , Depression/drug therapy , Feeding Behavior/drug effects , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Animals , Benzazepines/pharmacology , Benzophenones/pharmacology , Bupropion/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Depression/chemically induced , Dopamine Antagonists/pharmacology , Drug Evaluation, Preclinical , Male , Nitrophenols/pharmacology , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Salicylamides/pharmacology , Selegiline/pharmacology , Tolcapone , Xanthines/pharmacology
10.
Eur J Pharmacol ; 721(1-3): 64-9, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24099963

ABSTRACT

Cannabinoids both increase urine output and decrease urinary frequency in human subjects. However, these effects have not been systematically evaluated in intact mice, a species commonly used to evaluate the effects of novel cannabinoids. The present studies investigated whether cannabinoid agonists reliably produce diuresis in mice at doses comparable to those that produce other cannabinoid effects and, further, identified the receptors that may mediate these effects. Diuretic effects were measured in male mice over 6h. In some studies, urine was collected and analyzed for electrolyte measurements. In other studies, agonist injections were preceded by pretreatment with cannabinoid CB1 or CB2 selective antagonists, including a peripherally constrained CB1 antagonist. Companion studies evaluated the antinociceptive effects of the cannabinoid agonists in a warm-water tail-withdrawal assay. Direct-acting cannabinoid CB1 agonists Δ(9)-tetrahydrocannabinol (THC), WIN 55,212, AM7418 and AM4054, had biphasic effects on diuresis, with peak diuretic effects occurring at lower doses than peak antinociceptive effects. Cannabinoid diuresis was similar to κ-opioid agonist-induced diuresis in terms of maximum effects with only moderate loss of Na(+). Antagonism studies indicate that the diuretic effects of cannabinoids are CB1-receptor mediated, with both central and peripheral components. These findings suggest that mice may provide a model for understanding the mixed effects of marijuana on urine output, as described in clinical studies, and aid in the development of targeted cannabinoid based therapies for bladder dysfunction.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Diuretics/pharmacology , Animals , Electrolytes/urine , Homeostasis/drug effects , Male , Mice , Receptor, Cannabinoid, CB1/metabolism , Time Factors , Water/metabolism
11.
Biochemistry ; 52(29): 5016-26, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23795559

ABSTRACT

Human monoacylglycerol lipase (hMGL) regulates endocannabinoid signaling primarily by deactivating the lipid messenger 2-arachidonoylglycerol. Agents that carbamylate hMGLs catalytic Ser(122) constitute a leading class of therapeutically promising hMGL inhibitors. We have applied peptide-level hydrogen/deuterium exchange mass spectrometry to characterize hMGL's conformational responses to two potent carbamylating inhibitors, AM6580 (irreversible) and AM6701 (slowly reversible). A dynamic, solvent-exposed lid domain is characteristic of hMGL's solution conformation. Both hMGL inhibitors restricted backbone enzyme motility in the active-site region and increased substrate binding-pocket solvent exposure. Covalent reaction of AM6580 with hMGL generates a bulkier carbamylated Ser(122) residue as compared to the more discrete Ser(122) modification by AM6701, a difference reflected in AM6580's more pronounced effect upon hMGL conformation. We demonstrate that structurally distinct carbamylating hMGL inhibitors generate particular conformational ensembles characterized by region-specific hMGL dynamics. By demonstrating the distinctive influences of two hMGL inhibitors on enzyme conformation, this study furthers our understanding at the molecular level of the dynamic features of hMGL interaction with small-molecule ligands.


Subject(s)
Enzyme Inhibitors/chemistry , Mass Spectrometry/methods , Monoacylglycerol Lipases/antagonists & inhibitors , Catalytic Domain , Humans , Hydrogen/chemistry , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry
12.
Pharmacol Biochem Behav ; 109: 16-22, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23603029

ABSTRACT

Due to the ubiquity of the CB1 cannabinoid receptor throughout the nervous system, as well as the many potential therapeutic uses of CB1 agonist-based interventions, it is desirable to synthesize novel probes of the CB1 receptor. Here, the acute behavioral effects of systemic (i.p.) administration of the putative novel CB1 full agonist AM 4054 were tested in rats. In Experiment 1, a dose range (0.15625-1.25 mg/kg) of AM 4054 produced effects consistent with CB1 agonism in the cannabinoid tetrad of tasks in rats, including induction of analgesia, catalepsy, hypothermia, and locomotor suppression. These effects were reversed with the CB1-selective inverse agonist AM 251 in Experiment 2, indicating that AM 4054 produced CB1 receptor-mediated effects. Analysis of open-field activity indicated that the reduction in locomotion is more consistent with general motor slowing than anxiogenesis. AM 4054 (0.0625-0.5 mg/kg) also dose-dependently reduced fixed-ratio 5 (FR5) operant responding for food in Experiment 3, and microanalysis of the timing and rate of lever pressing indicated a pattern of suppression similar to other CB1 agonists. Minimum doses of AM 4054 (0.125-0.3125 mg/kg) required to produce significant effects in these behavioral assays were lower than those of many CB1 agonists. It is likely that AM 4054 is a potent pharmacological tool for assessment of cannabinoid receptor function.


Subject(s)
Adamantane/analogs & derivatives , Behavior, Animal/drug effects , Cannabinol/analogs & derivatives , Receptor, Cannabinoid, CB1/agonists , Adamantane/pharmacology , Animals , Cannabinol/pharmacology , Conditioning, Operant , Male , Rats , Rats, Sprague-Dawley
13.
Protein Sci ; 22(6): 774-87, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23553709

ABSTRACT

The membrane-associated serine hydrolase, monoacylglycerol lipase (MGL), is a well-recognized therapeutic target that regulates endocannabinoid signaling. Crystallographic studies, while providing structural information about static MGL states, offer no direct experimental insight into the impact of MGL's membrane association upon its structure-function landscape. We report application of phospholipid bilayer nanodiscs as biomembrane models with which to evaluate the effect of a membrane system on the catalytic properties and conformational dynamics of human MGL (hMGL). Anionic and charge-neutral phospholipid bilayer nanodiscs enhanced hMGL's kinetic properties [apparent maximum velocity (Vmax) and substrate affinity (Km)]. Hydrogen exchange mass spectrometry (HX MS) was used as a conformational analysis method to profile experimentally the extent of hMGL-nanodisc interaction and its impact upon hMGL structure. We provide evidence that significant regions of hMGL lid-domain helix α4 and neighboring helix α6 interact with the nanodisc phospholipid bilayer, anchoring hMGL in a more open conformation to facilitate ligand access to the enzyme's substrate-binding channel. Covalent modification of membrane-associated hMGL by the irreversible carbamate inhibitor, AM6580, shielded the active site region, but did not increase solvent exposure of the lid domain, suggesting that the inactive, carbamylated enzyme remains intact and membrane associated. Molecular dynamics simulations generated conformational models congruent with the open, membrane-associated topology of active and inhibited, covalently-modified hMGL. Our data indicate that hMGL interaction with a phospholipid membrane bilayer induces regional changes in the enzyme's conformation that favor its recruiting lipophilic substrate/inhibitor from membrane stores to the active site via the lid, resulting in enhanced hMGL catalytic activity and substrate affinity.


Subject(s)
Lipid Bilayers/metabolism , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Phospholipids/metabolism , Humans , Kinetics , Lipid Bilayers/chemistry , Mass Spectrometry , Molecular Dynamics Simulation , Monoacylglycerol Lipases/antagonists & inhibitors , Phospholipids/chemistry , Protein Conformation/drug effects
14.
J Pharmacol Exp Ther ; 344(3): 561-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23287700

ABSTRACT

Cannabinoid receptor 1 (CB(1)) inverse agonists (e.g., rimonabant) have been reported to produce adverse effects including nausea, emesis, and anhedonia that limit their clinical applications. Recent laboratory studies suggest that the effects of CB(1) neutral antagonists differ from those of such inverse agonists, raising the possibility of improved clinical utility. However, little is known regarding the antagonist properties of neutral antagonists. In the present studies, the CB(1) inverse agonist SR141716A (rimonabant) and the CB(1) neutral antagonist AM4113 were compared for their ability to modify CB(1) receptor-mediated discriminative stimulus effects in nonhuman primates trained to discriminate the novel CB(1) full agonist AM4054. Results indicate that AM4054 serves as an effective CB(1) discriminative stimulus, with an onset and time course of action comparable with that of the CB(1) agonist Δ(9)-tetrahydrocannabinol, and that the inverse agonist rimonabant and the neutral antagonist AM4113 produce dose-related rightward shifts in the AM4054 dose-effect curve, indicating that both drugs surmountably antagonize the discriminative stimulus effects of AM4054. Schild analyses further show that rimonabant and AM4113 produce highly similar antagonist effects, as evident in comparable pA(2) values (6.9). Taken together with previous studies, the present data suggest that the improved safety profile suggested for CB(1) neutral antagonists over inverse agonists is not accompanied by a loss of antagonist action at CB(1) receptors.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Cannabinoids/pharmacology , Discrimination, Psychological/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Dronabinol/pharmacology , Ligands , Male , Piperidines/pharmacology , Pyrazoles/pharmacology , Rimonabant , Saimiri
15.
J Pharmacol Exp Ther ; 344(1): 8-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23019138

ABSTRACT

In vivo effects of cannabinoid (CB) agonists are often assessed using four well-established measures: locomotor activity, hypothermia, cataleptic-like effects, and analgesia. The present studies demonstrate that doses of CB agonists that produce these effects also reliably increase diuresis. Diuretic effects of several CB agonists were measured in female rats over 2 hours immediately after drug injection, and results were compared with hypothermic effects. Direct-acting CB1 agonists, including Δ(9)-tetrahydrocannabinol, WIN 55,212 [R-(1)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate], AM2389 [9ß-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol], and AM4054 [9ß-(hydroxymethyl)-3-(1-adamantyl)-hexahydrocannabinol], produced dose-dependent increases in diuresis and decreases in colonic temperature, with slightly lower ED(50) values for diuresis than for hypothermia. The highest doses of cannabinoid drugs yielded, on average, 26-32 g/kg urine; comparable effects were obtained with 10 mg/kg furosemide and 3.0 mg/kg trans-(-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50-488). Methanandamide (10.0 mg/kg) had lesser effect than other CB agonists, and the CB2 agonist AM1241 [1-(methylpiperidin-2-ylmethyl)-3-(2-iodo-5-nitrobenzoyl)indole], the anandamide transport inhibitor AM404, and the CB antagonist rimonabant did not have diuretic effects. In further studies, the diuretic effects of the CB1 agonist AM4054 were similar in male and female rats, displayed a relatively rapid onset to action, and were dose-dependently antagonized by 30 minutes pretreatment with rimonabant, but not by the vanilloid receptor type I antagonist capsazepine, nor were the effects of WIN 55,212 antagonized by the CB2 antagonist AM630 [(6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl) methanone)]. These data indicate that cannabinoids have robust diuretic effects in rats that are mediated via CB1 receptor mechanisms.


Subject(s)
Adamantane/analogs & derivatives , Cannabinoids/pharmacology , Cannabinol/analogs & derivatives , Diuretics , Adamantane/pharmacology , Animals , Arachidonic Acids/antagonists & inhibitors , Arachidonic Acids/pharmacology , Benzoxazines/antagonists & inhibitors , Benzoxazines/pharmacology , Body Temperature/drug effects , Cannabinoid Receptor Antagonists/pharmacology , Cannabinoids/antagonists & inhibitors , Cannabinol/pharmacology , Confidence Intervals , Diuresis/drug effects , Dose-Response Relationship, Drug , Dronabinol/antagonists & inhibitors , Dronabinol/pharmacology , Female , Male , Morpholines/antagonists & inhibitors , Morpholines/pharmacology , Naphthalenes/antagonists & inhibitors , Naphthalenes/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/drug effects , Rimonabant , Water/pharmacology
16.
J Pharmacol Exp Ther ; 344(2): 319-28, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23197773

ABSTRACT

Behavioral studies of chronic CB(1) receptor activation may provide a pharmacological approach to understanding efficacy-related differences among CB(1) ligands as well as mechanistic commonalities between cannabinoid and noncannabinoid drugs. In the present studies, the effects of CB(1) agonists [(6aR,10aR)-3-(1-adamantyl)-6,6,9-trimethyl-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol (AM411), 9ß-(hydroxymethyl)-3-(1-adamantyl)-hexahydrocannabinol (AM4054), R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212.2), Δ(9)-tetrahydrocannabinol (Δ(9)-THC), (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide (methanandamide)], CB(1) antagonists [5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (SR141716A), 5-(4-alkylphenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (AM4113)], and dopamine (DA)-related [methamphetamine, (±)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF82958), (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390), (6aR)-5,6,6a,7-tetrahydro-6-propyl-4H-dibenzo[de,g]quinoline-10,11-diol (R-(-)-NPA), haloperidol] and opioid (morphine, naltrexone) drugs on scheduled-controlled responding under a 30-response fixed ratio schedule of stimulus-shock termination in squirrel monkeys were compared before and during chronic treatment with the long-acting CB(1) agonist AM411 (1.0 mg/kg per day, i.m.). Prechronic treatment with all drugs except naltrexone (1-10 mg/kg) produced dose-related decreases in responses rates. Dose-response re-determinations during chronic treatment revealed the following: 1) >250-fold (AM411, methanandamide) and >45-fold (AM4054, WIN55,212.2, Δ(9)-THC) rightward shifts in the ED(50) values for CB(1) agonists; 2) >100-fold and >20-fold leftward shifts in the ED(50) values for SR141716A and AM4113, respectively; and 3) approximately 4.8-fold and 10-fold rightward shifts in the ED(50) values for methamphetamine and the DA D(2) agonist R-(-)-NPA, respectively. Dose-response relationships for other DA-related and opioid drugs were unchanged by chronic CB(1) agonist treatment. Differences in the magnitude of tolerance among CB(1) agonists during chronic treatment may be indicative of differences in their pharmacological efficacy, whereas the enhanced sensitivity to behaviorally disruptive effects of CB(1) antagonists may provide evidence for CB(1)-related behavioral and/or physical dependence. Finally, the development of cross-tolerance to methamphetamine and R-(-)-NPA bolsters previous evidence of interplay between CB(1) and DA D(2) signaling mechanisms.


Subject(s)
Behavior, Animal/drug effects , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Dopamine Agents/pharmacology , Receptor, Cannabinoid, CB1/agonists , Substance Withdrawal Syndrome/etiology , Animals , Cannabinoid Receptor Agonists/adverse effects , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Drug Tolerance , Electroshock , Ligands , Male , Photic Stimulation , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Saimiri , Substance Withdrawal Syndrome/psychology
17.
PLoS One ; 7(10): e47934, 2012.
Article in English | MEDLINE | ID: mdl-23110135

ABSTRACT

Mesolimbic dopamine (DA) is involved in behavioral activation and effort-related processes. Rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. In the present study, the effects of several drug treatments were assessed using a progressive ratio (PROG)/chow feeding concurrent choice task. With this task, rats can lever press on a PROG schedule reinforced by a preferred high-carbohydrate food pellet, or alternatively approach and consume the less-preferred but concurrently available laboratory chow. Rats pass through each ratio level 15 times, after which the ratio requirement is incremented by one additional response. The DA D(2) antagonist haloperidol (0.025-0.1 mg/kg) reduced number of lever presses and highest ratio achieved but did not reduce chow intake. In contrast, the adenosine A(2A) antagonist MSX-3 increased lever presses and highest ratio achieved, but decreased chow consumption. The cannabinoid CB1 inverse agonist and putative appetite suppressant AM251 decreased lever presses, highest ratio achieved, and chow intake; this effect was similar to that produced by pre-feeding. Furthermore, DA-related signal transduction activity (pDARPP-32(Thr34) expression) was greater in nucleus accumbens core of high responders (rats with high lever pressing output) compared to low responders. Thus, the effects of DA antagonism differed greatly from those produced by pre-feeding or reduced CB1 transmission, and it appears unlikely that haloperidol reduces PROG responding because of a general reduction in primary food motivation or the unconditioned reinforcing properties of food. Furthermore, accumbens core signal transduction activity is related to individual differences in work output.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Choice Behavior/physiology , Dopamine/metabolism , Feeding Behavior/drug effects , Individuality , 3,3'-Diaminobenzidine , Adenosine A2 Receptor Antagonists/pharmacology , Analysis of Variance , Animal Feed/analysis , Animals , Dopamine Antagonists/pharmacology , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Haloperidol/pharmacology , Immunohistochemistry , Male , Piperidines , Pyrazoles , Rats , Rats, Sprague-Dawley , Xanthines/pharmacology
18.
Mol Pain ; 8: 71, 2012 Sep 22.
Article in English | MEDLINE | ID: mdl-22998838

ABSTRACT

BACKGROUND: Chemotherapeutic agents produce dose-limiting peripheral neuropathy through mechanisms that remain poorly understood. We previously showed that AM1710, a cannabilactone CB2 agonist, produces antinociception without producing central nervous system (CNS)-associated side effects. The present study was conducted to examine the antinociceptive effect of AM1710 in rodent models of neuropathic pain evoked by diverse chemotherapeutic agents (cisplatin and paclitaxel). A secondary objective was to investigate the potential contribution of alpha-chemokine receptor (CXCR4) signaling to both chemotherapy-induced neuropathy and CB2 agonist efficacy. RESULTS: AM1710 (0.1, 1 or 5 mg/kg i.p.) suppressed the maintenance of mechanical and cold allodynia in the cisplatin and paclitaxel models. Anti-allodynic effects of AM1710 were blocked by the CB2 antagonist AM630 (3 mg/kg i.p.), but not the CB1 antagonist AM251 (3 mg/kg i.p.), consistent with a CB2-mediated effect. By contrast, blockade of CXCR4 signaling with its receptor antagonist AMD3100 (10 mg/kg i.p.) failed to attenuate mechanical or cold hypersensitivity induced by either cisplatin or paclitaxel. Moreover, blockade of CXCR4 signaling failed to alter the anti-allodynic effects of AM1710 in the paclitaxel model, further suggesting distinct mechanisms of action. CONCLUSIONS: Our results indicate that activation of cannabinoid CB2 receptors by AM1710 suppresses both mechanical and cold allodynia in two distinct models of chemotherapy-induced neuropathic pain. By contrast, CXCR4 signaling does not contribute to the maintenance of chemotherapy-induced established neuropathy or efficacy of AM1710. Our studies suggest that CB2 receptors represent a promising therapeutic target for the treatment of toxic neuropathies produced by cisplatin and paclitaxel chemotherapeutic agents.


Subject(s)
Cisplatin/adverse effects , Cryopyrin-Associated Periodic Syndromes/chemically induced , Hyperalgesia/chemically induced , Paclitaxel/adverse effects , Peripheral Nervous System Diseases/chemically induced , Receptor, Cannabinoid, CB2/metabolism , Receptors, CXCR4/metabolism , Animals , Benzylamines , Chromones/chemistry , Chromones/pharmacology , Chromones/therapeutic use , Cryopyrin-Associated Periodic Syndromes/complications , Cryopyrin-Associated Periodic Syndromes/drug therapy , Cryopyrin-Associated Periodic Syndromes/metabolism , Cyclams , Disease Models, Animal , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Indoles/chemistry , Indoles/pharmacology , Indoles/therapeutic use , Male , Peripheral Nervous System Diseases/complications , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/metabolism , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/therapeutic use , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptors, CXCR4/antagonists & inhibitors , Signal Transduction/drug effects , Time Factors , Treatment Outcome
19.
ACS Chem Neurosci ; 3(5): 393-9, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22860208

ABSTRACT

In the mammalian central nervous system, monoacylglycerol lipase (MGL) is principally responsible for inactivating the endocannabinoid signaling lipid 2-arachidonoylglycerol (2-AG) and modulates cannabinoid-1 receptor (CB1R) desensitization and signal intensity. MGL is also a drug target for diseases in which CB1R stimulation may be therapeutic. To inform the design of human MGL (hMGL) inhibitors, we have engineered a Leu(Leu(169);Leu(176))-to-Ser(Ser(169);Ser(176)) double hMGL mutant (sol-hMGL) which exhibited enhanced solubility properties, and we further mutated this variant by substituting its catalytic-triad Ser(122) with Cys (sol-S-hMGL). The hMGL variants hydrolyzed both 2-AG and a fluorogenic reporter substrate with comparable affinities. Our results suggest that the hMGL cysteine mutant maintains the same overall architecture as wild-type hMGL. The results also underscore the superior nucleophilic nature of the reactive catalytic Ser(122) residue as compared to that of Cys(122) in the sol-S-hMGL mutant and suggest that the nucleophilic character of the Cys(122) residue is not commensurately enhanced within the three dimensional architecture of hMGL. The interaction of the sol-hMGL variants with the irreversible inhibitors AM6580 and N-arachidonylmaleimide (NAM) and the reversible inhibitor AM10212 was profiled. LC/MS analysis of tryptic digests from sol-S-hMGL directly demonstrate covalent modification of this variant by NAM and AM6580, consistent with enzyme thiol alkylation and carbamoylation, respectively. These data provide insight into hMGL catalysis, the key role of the nucleophilic character of Ser(122), and the mechanisms underlying hMGL inhibition by different classes of small molecules.


Subject(s)
Endocannabinoids/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Protein Engineering/methods , Sulfhydryl Compounds/metabolism , Amino Acid Substitution/genetics , Endocannabinoids/chemistry , Endocannabinoids/genetics , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Monoacylglycerol Lipases/genetics , Mutation , Solubility , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology
20.
Psychopharmacology (Berl) ; 216(3): 355-65, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21369753

ABSTRACT

RATIONALE: Discovery of an endocannabinoid signaling system launched the development of the blocker rimonabant, a cannabinoid CB1 receptor (CB(1)R) antagonist/inverse agonist. Due to untoward effects, this medication was withdrawn and efforts have been directed towards discovering chemicals with more benign profiles. OBJECTIVE: This study aims to comparatively evaluate new ligands using a rimonabant discriminated drinking aversion procedure. METHODS: Rats discriminated between rimonabant (5.6 mg/kg) and vehicle. The 30 min saccharin (0.1%) drinking after rimonabant pretreatment was followed by injection of lithium chloride (120 mg/kg) in the experimental animals. After vehicle pretreatment, experimental animals were given i.p. NaCl (10 ml/kg). Postdrinking treatment for controls was NaCl, irrespective of pretreatment condition (rimonabant or vehicle). RESULTS: The centrally acting neutral CB(1)R antagonist AM4113, but not the limited brain penetrating CB(1)R neutral antagonist AM6545, substituted for rimonabant. The CB(1)R agonists THC (1-10 mg/kg), AM1346 (1-10 mg/kg) did not substitute. The rimonabant-induced conditioned suppression of saccharin drinking was attenuated when CB(1)R agonists AM5983 (0.01-1 mg/kg) and THC (10 mg/kg), but not the CB(1)R agonist AM1346 (0.1-18 mg/kg), were combined with rimonabant (5.6 mg/kg). By varying the injection-to-test interval, we gauged the relative duration of the cueing effects of rimonabant, and the in vivo functional half-life was estimated to be approximately 1.5 h. CONCLUSION: A neutral CB(1)R antagonist (AM4113) produced cueing effects similar to those of rimonabant and generalization likely was centrally mediated. The functional cueing effects of rimonabant are relatively short-acting, pharmacologically selective, and differentially blocked by cannabinergics.


Subject(s)
Cannabinoids/pharmacology , Discrimination, Psychological/drug effects , Indoles/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Arachidonic Acids/pharmacology , Cannabinoids/chemistry , Dose-Response Relationship, Drug , Drinking/drug effects , Dronabinol/pharmacology , Ligands , Male , Morpholines/pharmacology , Polyunsaturated Alkamides/pharmacology , Rats , Rats, Sprague-Dawley , Rimonabant , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL