Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Alzheimers Dement ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096164

ABSTRACT

INTRODUCTION: We developed a multimarker blood test result interpretation tool for the clinical dementia practice, including phosphorylated (P-)tau181, amyloid-beta (Abeta)42/40, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). METHODS: We measured the plasma biomarkers with Simoa (n = 1199), applied LASSO regression for biomarker selection and receiver operating characteristics (ROC) analyses to determine diagnostic accuracy. We validated our findings in two independent cohorts and constructed a visualization approach. RESULTS: P-tau181, GFAP, and NfL were selected. This combination had area under the curve (AUC) = 83% to identify amyloid positivity in pre-dementia stages, AUC = 87%-89% to differentiate Alzheimer's or controls from frontotemporal dementia, AUC = 74%-76% to differentiate Alzheimer's or controls from dementia with Lewy bodies. Highly reproducible AUCs were obtained in independent cohorts. The resulting visualization tool includes UpSet plots to visualize the stand-alone biomarker results and density plots to visualize the biomarker results combined. DISCUSSION: Our multimarker blood test interpretation tool is ready for testing in real-world clinical dementia settings. HIGHLIGHTS: We developed a multimarker blood test interpretation tool for clinical dementia practice. Our interpretation tool includes plasma biomarkers P-tau, GFAP, and NfL. Our tool is particularly useful for Alzheimer's and frontotemporal dementia diagnosis.

2.
Alzheimers Res Ther ; 16(1): 190, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169442

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a common, complex and multifactorial disease that may require screening across multiple routes of referral to enable early detection and subsequent future implementation of tailored interventions. Blood- and eye-based biomarkers show promise as low-cost, scalable and patient-friendly tools for early AD detection given their ability to provide information on AD pathophysiological changes and manifestations in the retina, respectively. Eye clinics provide an intriguing real-world proof-of-concept setting to evaluate the performance of these potential AD screening tools given the intricate connections between the eye and brain, presumed enrichment for AD pathology in the aging population with eye disorders, and the potential for an accelerated diagnostic pathway for under-recognized patient groups. METHODS: The BeyeOMARKER study is a prospective, observational, longitudinal cohort study aiming to include individuals visiting an eye-clinic. Inclusion criteria entail being ≥ 50 years old and having no prior dementia diagnosis. Excluded eye-conditions include traumatic insults, superficial inflammation, and conditions in surrounding structures of the eye that are not engaged in vision. The BeyeOMARKER cohort (n = 700) will undergo blood collection to assess plasma p-tau217 levels and a brief cognitive screening at the eye clinic. All participants will subsequently be invited for annual longitudinal follow-up including remotely administered cognitive screening and questionnaires. The BeyeOMARKER + cohort (n = 150), consisting of 100 plasma p-tau217 positive participants and 50 matched negative controls selected from the BeyeOMARKER cohort, will additionally undergo Aß-PET and tau-PET, MRI, retinal imaging including hyperspectral imaging (primary), widefield imaging, optical coherence tomography (OCT) and OCT-Angiography (secondary), and cognitive and cortical vision assessments. RESULTS: We aim to implement the current protocol between April 2024 until March 2027. Primary outcomes include the performance of plasma p-tau217 and hyperspectral retinal imaging to detect AD pathology (using Aß- and tau-PET visual read as reference standard) and to detect cognitive decline. Initial follow-up is ~ 2 years but may be extended with additional funding. CONCLUSIONS: We envision that the BeyeOMARKER study will demonstrate the feasibility of early AD detection based on blood- and eye-based biomarkers in alternative screening settings, and will improve our understanding of the eye-brain connection. TRIAL REGISTRATION: The BeyeOMARKER study (Eudamed CIV ID: CIV-NL-23-09-044086; registration date: 19th of March 2024) is approved by the ethical review board of the Amsterdam UMC.


Subject(s)
Alzheimer Disease , Biomarkers , Early Diagnosis , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Biomarkers/blood , Prospective Studies , Male , Female , Aged , tau Proteins/blood , Middle Aged , Longitudinal Studies , Amyloid beta-Peptides/blood , Eye Diseases/diagnosis , Eye Diseases/blood , Eye Diseases/diagnostic imaging , Tomography, Optical Coherence/methods , Cohort Studies
3.
Neurobiol Aging ; 141: 121-128, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908030

ABSTRACT

Traumatic brain injury (TBI) and Alzheimer's disease (AD) have overlapping mechanisms but it remains unknown if pathophysiological characteristics and cognitive trajectories in AD patients are influenced by TBI history. Here, we studied AD patients (stage MCI or dementia) with TBI history (ADTBI+, n=110), or without (ADTBI-, n=110) and compared baseline CSF concentrations of amyloid beta 1-42 (Aß42), phosphorylated tau181 (pTau181), total tau, neurofilament light chain (NfL), synaptosomal associated protein-25kDa (SNAP25), neurogranin (Ng), neuronal pentraxin-2 (NPTX2) and glutamate receptor-4 (GluR4), as well as differences in cognitive trajectories using linear mixed models. Explorative, analyses were repeated within stratified TBI groups by TBI characteristics (timing, severity, number). We found no differences in baseline CSF biomarker concentrations nor in cognitive trajectories between ADTBI+ and ADTBI- patients. TBI >5 years ago was associated with higher NPTX2 and a tendency for higher SNAP25 concentrations compared to TBI ≤ 5 years ago, suggesting that TBI may be associated with long-term synaptic dysfunction only when occurring before onset or in a pre-clinical disease stage of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Brain Injuries, Traumatic , Cognition , tau Proteins , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Brain Injuries, Traumatic/cerebrospinal fluid , Brain Injuries, Traumatic/complications , Biomarkers/cerebrospinal fluid , Male , Female , Aged , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Neurogranin/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Neurofilament Proteins/cerebrospinal fluid , Middle Aged , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnosis , Aged, 80 and over , Synaptosomal-Associated Protein 25/cerebrospinal fluid , C-Reactive Protein/cerebrospinal fluid , Nerve Tissue Proteins
4.
Mol Neurodegener ; 19(1): 38, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658964

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS: We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS: We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS: Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.


Subject(s)
Adaptive Immunity , Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Humans , Alzheimer Disease/immunology , Alzheimer Disease/cerebrospinal fluid , Aged , Male , Cognitive Dysfunction/immunology , Female , Adaptive Immunity/immunology , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Middle Aged
5.
J Alzheimers Dis ; 98(3): 987-1000, 2024.
Article in English | MEDLINE | ID: mdl-38489178

ABSTRACT

Background: We hypothesize that Alzheimer's disease (AD)-related pathology may accelerate cognitive decline in patients with cardiovascular diseases. Objective: To investigate the association between blood-based biomarkers of AD, astrocyte activation, and neurodegeneration and cognitive decline. Methods: From the multi-center Heart-Brain study, we included 412 patients with heart failure, carotid occlusive disease or vascular cognitive impairment (age:68.6±9.0) and 128 reference participants (65.7±7.5). Baseline amyloid-ß42/40 (Aß42/40), phosphorylated-tau181 (pTau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) were determined using SiMoA (Quanterix). Memory, attention, language, and executive functioning were evaluated (follow-up:2.1±0.3 years). We applied linear mixed models with terms for biomarker, time and biomarker*time interactions, adjusted for age, sex, education, and site, to assess associations between biomarkers and cognitive decline. Results: Among patients, Aß42/40 was not associated with cognitive performance at baseline. However, lower Aß42/40 was associated with steeper decline in global cognition (ß±SE:0.04±0.02). Higher pTau181 was associated with worse baseline performance on global cognition (-0.14±0.04) and memory (-0.31±0.09) and with steeper decline in global cognition (-0.07±0.02), memory (-0.09±0.04), attention (-0.05±0.02), and language (-0.10±0.03). Higher GFAP was associated with worse baseline performance on global cognition (-0.22±0.05), memory (-0.43±0.10), attention (-0.14±0.06), language (-0.15±0.05), and executive functioning (-0.15±0.05) and steeper decline in global cognition (-0.05±0.01). Higher NfL was associated with worse baseline performance on global cognition (-0.16±0.04), memory (-0.28±0.09), attention (-0.20±0.06), and executive functioning (-0.10±0.04), but was not associated with performance over time. In reference participants, no associations were found. Conclusions: Our findings suggest that blood-based biomarkers of AD-related pathology predict cognitive decline in patients with cardiovascular diseases.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/pathology , Cardiovascular Diseases/complications , Amyloid beta-Peptides , Brain/pathology , Cognitive Dysfunction/psychology , Biomarkers , tau Proteins
6.
Am J Geriatr Psychiatry ; 32(9): 1141-1153, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38553327

ABSTRACT

BACKGROUND: Depressive symptoms are associated with an increased risk of Alzheimer's disease (AD). There has been a recent emergence in plasma biomarkers for AD pathophysiology, such as amyloid-beta (Aß) and phosphorylated tau (p-tau), as well as for axonal damage (neurofilament light, NfL) and astrocytic activation (glial fibrillary acidic protein, GFAP). Hypothesizing that depressive symptoms may occur along the AD process, we investigated associations between plasma biomarkers of AD with depressive symptoms in individuals without dementia. METHODS: A two-stage meta-analysis was performed on 2 clinic-based and 6 population-based cohorts (N = 7210) as part of the Netherlands Consortium of Dementia Cohorts. Plasma markers (Aß42/40, p-tau181, NfL, and GFAP) were measured using Single Molecular Array (Simoa; Quanterix) assays. Depressive symptoms were measured with validated questionnaires. We estimated the cross-sectional association of each standardized plasma marker (determinants) with standardized depressive symptoms (outcome) using linear regressions, correcting for age, sex, education, and APOE ε4 allele presence, as well as subgrouping by sex and APOE ε4 allele. Effect estimates were entered into a random-effects meta-analysis. RESULTS: Mean age of participants was 71 years. The prevalence of clinically relevant depressive symptoms ranged from 1% to 22%. None of the plasma markers were associated with depressive symptoms in the meta-analyses. However, NfL was associated with depressive symptoms only in APOE ε4 carriers (ß 0.11; 95% CI: 0.05-0.17). CONCLUSIONS: Late-life depressive symptoms did not show an association to plasma biomarkers of AD pathology. However, in APOE ε4 allele carriers, a more profound role of neurodegeneration was suggested with depressive symptoms.


Subject(s)
Alzheimer Disease , Biomarkers , Depression , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Biomarkers/blood , Depression/blood , Depression/epidemiology , Aged , tau Proteins/blood , Amyloid beta-Peptides/blood , Cohort Studies , Female , Male , Netherlands/epidemiology , Neurofilament Proteins/blood , Apolipoprotein E4/genetics , Apolipoprotein E4/blood
7.
J Am Heart Assoc ; 13(4): e032134, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38353228

ABSTRACT

BACKGROUND: Two of the main causes for dementia are Alzheimer's disease (AD) and vascular pathology, with most patients showing mixed pathology. Plasma biomarkers for Alzheimer's disease-related pathology have recently emerged, including Aß (amyloid-beta), p-tau (phosphorylated tau), NfL (neurofilament light), and GFAP (glial fibrillary acidic protein). There is a current gap in the literature regarding whether there is an association between these plasma biomarkers with vascular pathology and neurodegeneration. METHODS AND RESULTS: Cross-sectional data from 594 individuals (mean [SD] age: 64 [8] years; 17% female) were included from the SMART-MR (Second Manifestations of Arterial Disease-Magnetic Resonance) study, a prospective cohort study of individuals with a history of arterial disease. Plasma markers were assessed using single molecular array assays (Quanterix). Magnetic resonance imaging markers included white matter hyperintensity volume, presence of infarcts (yes/no), total brain volume, and hippocampal volume assessed on 1.5T magnetic resonance imaging. Linear regressions were performed for each standardized plasma marker with white matter hyperintensity volume, total brain volume, and hippocampal volume as separate outcomes, correcting for age, sex, education, and intracranial volume. Logistic regressions were performed for the presence of lacunar and cortical infarcts. Higher p-tau181 was associated with larger white matter hyperintensity volume (b per SD increase=0.16 [95% CI, 0.06-0.26], P=0.015). Higher NfL (b=-5.63, [95% CI, -8.95 to -2.31], P=0.015) was associated with lower total brain volume and the presence of infarcts (odds ratio [OR], 1.42 [95% CI, 1.13-1.78], P=0.039). Higher GFAP levels were associated with cortical infarcts (OR, 1.45 [95% CI, 1.09-1.92], P=0.010). CONCLUSIONS: Plasma biomarkers that have been associated with tau pathology, axonal injury, and astrocytic activation are related to magnetic resonance imagingmarkers of vascular pathology and neurodegeneration in patients with manifest arterial disease.


Subject(s)
Alzheimer Disease , Humans , Female , Middle Aged , Male , Alzheimer Disease/metabolism , Prospective Studies , Cross-Sectional Studies , tau Proteins/metabolism , Magnetic Resonance Imaging , Biomarkers , Infarction
8.
J Alzheimers Dis ; 97(3): 1353-1363, 2024.
Article in English | MEDLINE | ID: mdl-38306056

ABSTRACT

BACKGROUND: Alzheimer's disease (AD), the most common cause of dementia, poses a significant global burden. Diagnosis typically involves invasive and costly methods like neuroimaging or cerebrospinal fluid (CSF) biomarker testing of phosphorylated tau (p-tau) and amyloid-ß42/40 (Aß42/40). Such procedures are especially impractical in resource-constrained regions, such as the Democratic Republic of Congo (DRC). Blood-based biomarker testing may provide a more accessible screening opportunity. OBJECTIVE: This study aims to examine if AD-related blood-based biomarkers are associated with cognitive test performance in the Congolese population, where limited research has been conducted. METHODS: In this cross-sectional study of 81 Congolese individuals, cognitive assessments (Alzheimer's Questionnaire (AQ) and Community Screening Interview for Dementia (CSID)) distinguished dementia cases from controls. Blood draws were taken to assess p-tau 181 and Aß42/40 biomarkers. Relationships between the biomarkers and cognitive performance were analyzed using multiple linear regression models. RESULTS: Lower plasma Aß42/40 was significantly associated with lower CSID scores and higher AQ scores, indicative of AD (p < 0.001). These relationships were observed in healthy controls (CSID p = 0.01, AQ p = 0.03), but not in dementia cases. However, p-tau 181 did not exhibit significant associations with either measure. Factors such as age, sex, education, presence of APOEɛ4 allele, did not alter these relationships. CONCLUSIONS: Understanding relationships between AD-related screening tests and blood biomarkers is a step towards utilization of blood-based biomarker tests as a screening tool for AD, especially in resource-limited regions. Further research should be conducted to evaluate blood biomarker test efficacy in larger samples and other populations.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Cross-Sectional Studies , Amyloid beta-Peptides/cerebrospinal fluid , Democratic Republic of the Congo , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid , Cognition , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/cerebrospinal fluid
9.
Alzheimers Res Ther ; 16(1): 34, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355535

ABSTRACT

BACKGROUND: Lack of early molecular biomarkers in sporadic behavioral variants of frontotemporal dementia (bvFTD) and its clinical overlap with primary psychiatric disorders (PPD) hampers its diagnostic distinction. Synaptic dysfunction is an early feature in bvFTD and identification of specific biomarkers might improve its diagnostic accuracy. Our goal was to understand the differential diagnostic potential of cerebrospinal fluid (CSF) synaptic biomarkers in bvFTD versus PPD and their specificity towards bvFTD compared with Alzheimer's disease (AD) and controls. Additionally, we explored the association of CSF synaptic biomarkers with social cognition, cognitive performance, and disease severity in these clinical groups. METHODS: Participants with probable bvFTD (n = 57), PPD (n = 71), AD (n = 60), and cognitively normal controls (n = 39) with available CSF, cognitive tests, and disease severity as frontotemporal lobar degeneration-modified clinical dementia rating scale (FTLD-CDR) were included. In a subset of bvFTD and PPD cases, Ekman 60 faces test scores for social cognition were available. CSF synaptosomal-associated protein 25 (SNAP25), neurogranin (Ng), neuronal pentraxin 2 (NPTX2), and glutamate receptor 4 (GluR4) were measured, along with neurofilament light (NfL), and compared between groups using analysis of covariance (ANCOVA) and logistic regression. Diagnostic accuracy was assessed using ROC analyses, and biomarker panels were selected using Wald's backward selection. Correlations with cognitive measures were performed using Pearson's partial correlation analysis. RESULTS: NPTX2 concentrations were lower in the bvFTD group compared with PPD (p < 0.001) and controls (p = 0.003) but not compared with AD. Concentrations of SNAP25 (p < 0.001) and Ng (p < 0.001) were elevated in patients with AD versus those with bvFTD and controls. The modeled panel for differential diagnosis of bvFTD versus PPD consisted of NfL and NPTX2 (AUC = 0.96, CI: 0.93-0.99, p < 0.001). In bvFTD versus AD, the modeled panel consisted of NfL, SNAP25, Ng, and GluR4 (AUC = 0.86, CI: 0.79-0.92, p < 0.001). In bvFTD, lower NPTX2 (Pearson's r = 0.29, p = 0.036) and GluR4 (Pearson's r = 0.34, p = 0.014) concentrations were weakly associated with worse performance of total cognitive score. Lower GluR4 concentrations were also associated with worse MMSE scores (Pearson's r = 0.41, p = 0.002) as well as with worse executive functioning (Pearson's r = 0.36, p = 0.011) in bvFTD. There were no associations between synaptic markers and social cognition or disease severity in bvFTD. CONCLUSION: Our findings of involvement of NTPX2 in bvFTD but not PPD contribute towards better understanding of bvFTD disease pathology.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/diagnosis , ROC Curve , Neuropsychological Tests , Biomarkers/cerebrospinal fluid
10.
Alzheimers Dement ; 20(4): 2453-2468, 2024 04.
Article in English | MEDLINE | ID: mdl-38323780

ABSTRACT

INTRODUCTION: For routine clinical implementation of Alzheimer's disease (AD) plasma biomarkers, fully automated random-access platforms are crucial to ensure reproducible measurements. We aimed to perform an analytical validation and to establish cutoffs for AD plasma biomarkers measured with Lumipulse. METHODS: Two cohorts were included. UNIPG: n = 450 paired cerebrospinal fluid (CSF)/plasma samples from subjects along the AD-continuum, subjects affected by other neurodegenerative diseases, and controls with known CSF profile; AMS: n = 40 plasma samples from AD and n = 40 controls. Plasma amyloid ß (Aß)42, Aß40, and p-tau181 were measured with Lumipulse. We evaluated analytical and diagnostic performance. RESULTS: Lumipulse assays showed high analytical performance. Plasma p-tau181 levels accurately reflected CSF A+/T+ profile in AD-dementia and mild cognitive impairment (MCI)-AD, but not in asymptomatic-AD. Plasma and CSF Aß42/40 values were concordant across clinical AD stages. Cutoffs and probability-based models performed satisfactorily in both cohorts. DISCUSSION: The identified cutoffs and probability-based models represent a significant step toward plasma AD molecular diagnosis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Biomarkers/cerebrospinal fluid
11.
Neurology ; 102(2): e207978, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165338

ABSTRACT

BACKGROUND AND OBJECTIVES: It is unclear to what extent cognitive outcome measures are sensitive to capture decline in Alzheimer disease (AD) prevention trials. We aimed to analyze the sensitivity to changes over time of a range of neuropsychological tests in several cognitively unimpaired, biomarker-defined patient groups. METHODS: Cognitively unimpaired individuals from the Amsterdam Dementia Cohort and the SCIENCe project with available AD biomarkers, obtained from CSF, PET scans, and plasma at baseline, were followed over time (4.5 ± 3.1 years, range 0.6-18.9 years). Based on common inclusion criteria for clinical trials, we defined groups (amyloid, phosphorylated tau [p-tau], APOE ε4). Linear mixed models, adjusted for age, sex, and education, were used to estimate change over time in neuropsychological tests, a functional outcome, and 2 cognitive composite measures. Standardized regression coefficients of time in years (ßtime) were reported as outcome of interest. We analyzed change over time with full follow-up, as well as with follow-up limited to 1.5 and 3 years. RESULTS: We included 387 individuals (aged 61.7 ± 8.6 years; 44% female) in the following (partly overlapping) biomarker groups: APOE ε4 carriers (n = 212), amyloid-positive individuals (n = 109), amyloid-positive APOE ε4 carriers (n = 66), CSF p-tau-positive individuals (n = 127), plasma p-tau-positive individuals (n = 71), and amyloid and CSF p-tau-positive individuals (n = 50), or in a control group (normal biomarkers; n = 65). An executive functioning task showed most decline in all biomarker groups (ßtime range -0.30 to -0.71), followed by delayed word list recognition (ßtime range -0.18 to -0.50). Functional decline (ßtime range -0.17 to -0.63) was observed in all, except the CSF and plasma tau-positive groups. Both composites showed comparable amounts of change (ßtime range -0.12 to -0.62) in all groups, except plasma p-tau-positive individuals. When limiting original follow-up duration, many effects disappeared or even flipped direction. DISCUSSION: In conclusion, functional, composite, and neuropsychological outcome measures across all cognitive domains detect changes over time in various biomarker-defined groups, with changes being most evident among individuals with more AD pathology. AD prevention trials should use sufficiently long follow-up duration and/or more sensitive outcome measures to optimally capture subtle cognitive changes over time.


Subject(s)
Alzheimer Disease , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Apolipoprotein E4/genetics , Amyloidogenic Proteins , Biomarkers , Cognition
12.
Clin Chem Lab Med ; 62(7): 1252-1265, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38215341

ABSTRACT

Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive neuromuscular degeneration resulting from mutations in the survival motor neuron (SMN1) gene. The availability of disease-modifying therapies for SMA therapies highlights the pressing need for easily accessible and cost-effective blood biomarkers to monitor treatment response and for better disease management. Additionally, the wide implementation of newborn genetic screening programs in Western countries enables presymptomatic diagnosis of SMA and immediate treatment administration. However, the absence of monitoring and prognostic blood biomarkers for neurodegeneration in SMA hinders effective disease management. Neurofilament light protein (NfL) is a promising biomarker of neuroaxonal damage in SMA and reflects disease progression in children with SMA undergoing treatment. Recently, the European Medicines Agency issued a letter of support endorsing the potential utilization of NfL as a biomarker of pediatric neurological diseases, including SMA. Within this review, we comprehensively assess the potential applications of NfL as a monitoring biomarker for disease severity and treatment response in pediatric-onset SMA. We provide reference ranges for normal levels of serum based NfL in neurologically healthy children aged 0-18 years. These reference ranges enable accurate interpretation of NfL levels in children and can accelerate the implementation of NfL into clinical practice.


Subject(s)
Biomarkers , Muscular Atrophy, Spinal , Neurofilament Proteins , Child , Humans , Infant , Biomarkers/blood , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/blood , Neurofilament Proteins/blood , Reference Values , Infant, Newborn , Child, Preschool , Adolescent
13.
Alzheimers Dement (Amst) ; 15(4): e12496, 2023.
Article in English | MEDLINE | ID: mdl-37954546

ABSTRACT

Introduction: This study investigates whether plasma biomarkers (Aß42/40 and p-tau 181), APS, as well as apolipoprotein E (APOE) proteotype predict cognitive deficits in elderly adults from the Democratic Republic of Congo. Methods: Forty-four with possible AD (pAD) and 41 healthy control (HC) subjects were screened using CSID and AQ, underwent cognitive assessment with the African Neuropsychology Battery (ANB), and provided blood samples for plasma Aß42, Aß40, Aß42/40, and APOE proteotype. Linear and logistic regression were used to evaluate the associations of plasma biomarkers with ANB tests and the ability of biomarkers to predict cognitive status. Results: Patients with pAD had significantly lower plasma Aß42/40 levels, higher APS, and higher prevalence of APOE E4 allele compared to HC. Groups did not differ in levels of Aß40, Aß42, or P-tau 181. Results showed that Aß42/40 ratio and APS were significantly associated with African Naming Test (ANT), African List Memory Test (ALMT), and African Visuospatial Memory Test (AVMT) scores, while the presence of APOE E4 allele was associated with ANT, ALMT, AVMT, and APT scores. P-tau 181 did not show any significant associations while adjusting for age, education, and gender. APS showed the highest area under the curve (AUC) value (AUC = 0.78, 95% confidence interval [CI]: 0.68-0.88) followed by Aß42/40 (AUC = 0.75, 95% CI: 0.66-0.86) and APOE E4 (AUC = 0.69 (CI 0.57-0.81) in discriminating pAD from HC. Discussion: These results demonstrate associations between select plasma biomarker of AD pathology (Aß42/40), APS, and APOE E4 allele) and ANB test scores and the ability of these biomarkers to differentiate pAD from cognitively normal SSA individuals, consistent with findings reported in other settings.

14.
NPJ Aging ; 9(1): 17, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37666862

ABSTRACT

Osteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (Aß) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into Aß- (n = 65) and Aß+ (n = 35) according to their brain Aß load assessed using Aß-PET (positron emission tomography) imaging. Plasma SOST levels, apolipoprotein E gene (APOE) genotype and several putative AD blood-biomarkers including Aß40, Aß42, Aß42/Aß40, neurofilament light (NFL), glial fibrillary acidic protein (GFAP), total tau (t-tau) and phosphorylated tau (p-tau181 and p-tau231) were detected and compared. It was found that plasma SOST levels were significantly higher in the Aß+ group (71.49 ± 25.00 pmol/L) compared with the Aß- group (56.51 ± 22.14 pmol/L) (P < 0.01). Moreover, Spearman's correlation analysis showed that plasma SOST concentrations were positively correlated with brain Aß load (ρ = 0.321, P = 0.001). Importantly, plasma SOST combined with Aß42/Aß40 ratio significantly increased the area under the curve (AUC) when compared with using Aß42/Aß40 ratio alone (AUC = 0.768 vs 0.669, P = 0.027). In conclusion, plasma SOST levels are elevated in cognitively unimpaired older adults at high risk of AD and SOST could complement existing plasma biomarkers to assist in the detection of preclinical AD.

15.
J Proteome Res ; 22(9): 3068-3080, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37606934

ABSTRACT

Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection.


Subject(s)
Biomedical Research , Proteome , Humans , Brain , Protein Transport , Biological Transport , Cerebrospinal Fluid Proteins
16.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Article in English | MEDLINE | ID: mdl-37557955

ABSTRACT

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Subject(s)
Alzheimer Disease , Humans , Brain , Biomarkers , Neurons , Precision Medicine , Amyloid beta-Peptides
17.
Brain Commun ; 5(1): fcad024, 2023.
Article in English | MEDLINE | ID: mdl-36824390

ABSTRACT

Blood-based biomarkers could prove useful to predict Alzheimer's disease core pathologies in advance of clinical symptoms. Implementation of such biomarkers requires a solid understanding of their long-term dynamics and the contribution of confounding to their association with Alzheimer's disease pathology. Here we assess the value of plasma amyloid-ß1-42/1-40, phosphorylated-tau181 and glial fibrillary acidic protein to detect early Alzheimer's disease pathology, accounting for confounding by genetic and early environmental factors. Participants were 200 monozygotic twins, aged ≥60 years with normal cognition from the european medical information framework for Alzheimer's disease study. All twins had amyloid-ß status and plasma samples available at study enrolment. For 80 twins, additional plasma samples were available that had been collected approximately 10 years prior to amyloid-ß status assessment. Single-molecule array assays were applied to measure amyloid-ß1-42/1-40, phosphorylated-tau181 and glial fibrillary acidic protein. Predictive value of and longitudinal change in these biomarkers were assessed using receiver operating characteristic curve analysis and linear mixed models. Amyloid pathology could be predicted using blood-based biomarkers obtained at the time of amyloid status assessment (amyloid-ß1-42/1-40: area under the curve = 0.65, P = 0.01; phosphorylated-tau181: area under the curve = 0.84, P < 0.001; glial fibrillary acidic protein: area under the curve = 0.74, P < 0.001), as well as using those obtained 10 years prior to amyloid status assessment (amyloid-ß1-42/1-40: area under the curve = 0.69, P = 0.03; phosphorylated-tau181: area under the curve = 0.92, P < 0.001; glial fibrillary acidic protein: area under the curve = 0.84, P < 0.001). Longitudinally, amyloid-ß1-42/1-40 levels decreased [ß (SE) = -0.12 (0.01), P < 0.001] and phosphorylated-tau181 levels increased [ß (SE) = 0.02 (0.01), P = 0.004]. Amyloid-ß-positive individuals showed a steeper increase in phosphorylated-tau181 compared with amyloid-ß-negative individuals [ß (SE) = 0.06 (0.02), P = 0.004]. Also amyloid-ß-positive individuals tended to show a steeper increase in glial fibrillary acidic protein [ß (SE) = 0.04 (0.02), P = 0.07]. Within monozygotic twin pairs, those with higher plasma phosphorylated-tau181 and lower amyloid-ß1-42/1-40 levels were more likely to be amyloid-ß positive [ß (SE) = 0.95 (0.26), P < 0.001; ß (SE) = -0.28 (0.14), P < 0.05] indicating minimal contribution of confounding by genetic and early environmental factors. Our data support the use of amyloid-ß1-42/1-40, phosphorylated-tau181 and glial fibrillary acidic protein as screening tools for Alzheimer's disease pathology in the normal aging population, which is of importance for enrolment of high-risk subjects in secondary, or even primary, prevention trials. Furthermore, these markers show potential as low-invasive monitoring tool of disease progression and possibly treatment effects in clinical trials.

18.
J Nucl Med ; 64(3): 437-443, 2023 03.
Article in English | MEDLINE | ID: mdl-36229187

ABSTRACT

Both plasma tau phosphorylated at threonine-181 (pTau181) and tau PET show potential for detecting Alzheimer's disease (AD) pathology and predicting clinical progression. In this study, we performed a head-to-head comparison between plasma pTau181 and tau PET along the AD continuum. Methods: We included participants from the Amsterdam Dementia Cohort who underwent 18F-flortaucipir (tau) PET and had a plasma sample biobanked within 12 mo from tau PET. Fifty subjective cognitive decline (SCD) participants (31 Aß-negative and 19 Aß-positive) and 60 Aß-positive participants with mild cognitive impairment (MCI) or dementia due to AD were included. A subset had 2-y longitudinal plasma pTau181 and tau PET available (n = 40). Longitudinal neuropsychological test data covering 3.2 ± 2.7 y from both before and after tau PET were available. Plasma pTau181 and tau PET were compared in their accuracies in discriminating between cognitive stage (MCI/AD vs. SCD) and preclinical Aß status (SCD Aß-positive vs. SCD Aß-negative), their associations with cross-sectional and longitudinal neuropsychological test performance, and their longitudinal changes over time. Results: When discriminating between preclinical Aß status, the area under the curve (AUC) for plasma pTau181 (0.83) and tau PET (entorhinal, 0.87; temporal, 0.85; neocortical, 0.67) were equally high (all DeLong P > 0.05), but tau PET outperformed plasma pTau181 in discriminating MCI/AD from SCD (AUC for plasma pTau181: 0.74; AUCs for tau PET: entorhinal, 0.89; temporal, 0.92; neocortical, 0.89) (all P < 0.01). Overall, tau PET showed stronger associations with cognitive decline and was associated with a wider variety of cognitive tests than plasma pTau181 (plasma pTau181, -0.02 > ß < -0.12; tau PET, -0.01 > ß < -0.22). Both plasma pTau181 and tau PET increased more steeply over time in MCI/AD than in SCD (P < 0.05), but only tau PET annual changes were associated with cognitive decline. Conclusion: Our results suggest that plasma pTau181 and tau PET perform equally well in identifying Aß pathology but that tau PET better monitors disease stage and clinical progression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , tau Proteins , Cross-Sectional Studies , Amyloid beta-Peptides , Positron-Emission Tomography , Cognitive Dysfunction/diagnostic imaging , Disease Progression , Biomarkers
19.
Ann Clin Transl Neurol ; 9(11): 1832-1837, 2022 11.
Article in English | MEDLINE | ID: mdl-36196979

ABSTRACT

Interpretation of axonal damage biomarker Neurofilament Light chain (NfL) concentrations is difficult due to the lack of age-specific and disease-specific reference values. We here developed an interactive interface to support interpretation of NfL results in human body fluids. We used NfL values of 1698 individuals without a neurological disorder, aged 19-85 years, and patients with MS and dementias. Percentile regression estimates per diagnosis populate interactive graphs, alongside NfL background information (available on: https://mybiomarkers.shinyapps.io/Neurofilament). This accessible interface provides reference for interpretation of the individual patient results for clinicians. It showcases an adaptable method to support interpretation of age-dependent biomarkers in neurology.


Subject(s)
Axons , Intermediate Filaments , Humans , Reference Values , Biomarkers
20.
Alzheimers Dement (Amst) ; 14(1): e12285, 2022.
Article in English | MEDLINE | ID: mdl-35603139

ABSTRACT

Introduction: We explored what combination of blood-based biomarkers (amyloid beta [Aß]1-42/1-40, phosphorylated tau [p-tau]181, neurofilament light [NfL], glial fibrillary acidic protein [GFAP]) differentiates Alzheimer's disease (AD) dementia, frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). Methods: We measured the biomarkers with Simoa in two separate cohorts (n = 160 and n = 152). In one cohort, Aß1-42/1-40 was also measured with mass spectrometry (MS). We assessed the differential diagnostic value of the markers, by logistic regression with Wald's backward selection. Results: MS and Simoa Aß1-42/1-40 similarly differentiated AD from controls. The Simoa panel that optimally differentiated AD from FTD consisted of NfL and p-tau181 (area under the curve [AUC] = 0.94; cohort 1) or NfL, GFAP, and p-tau181 (AUC = 0.90; cohort 2). For AD from DLB, the panel consisted of NfL, p-tau181, and GFAP (AUC = 0.88; cohort 1), and only p-tau181 (AUC = 0.81; cohort 2). Discussion: A combination of plasma p-tau181, NfL, and GFAP, but not Aß1-42/1-40, might be useful to discriminate AD, FTD, and DLB.

SELECTION OF CITATIONS
SEARCH DETAIL