Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(60): 124806-124828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37989950

ABSTRACT

Dengue fever is a mosquito-borne viral illness that affects over 100 nations around the world, including Africa, America, the Eastern Mediterranean, Southeast Asia, and the Western Pacific. Those who get infected by virus for the second time are at greater risk of having persistent dengue symptoms. Dengue fever has yet to be treated with a long-lasting vaccination or medication. Because of their ease of use, mosquito repellents have become popular as a dengue prevention technique. However, this has resulted in environmental degradation and harm, as well as bioaccumulation and biomagnification of hazardous residues in the ecosystem. Synthetic pesticides have caused a plethora of serious problems that were not foreseen when they were originally introduced. The harm caused by the allopathic medications/synthetic pesticides/chemical mosquito repellents has paved the door to employment of eco-friendly/green approaches in order to reduce dengue cases while protecting the integrity of the nearby environment too. Since the cases of dengue have become rampant these days, hence, starting the medication obtained from green approaches as soon as the disease is detected is advisable. In the present paper, we recommend environmentally friendly dengue management strategies, which, when combined with a reasonable number of vector control approaches, may help to avoid the dengue havoc as well as help in maintaining the integrity of the ecosystem.


Subject(s)
Aedes , Dengue , Epidemics , Pesticides , Animals , Humans , Dengue/epidemiology , Ecosystem , Mosquito Vectors
2.
Environ Sci Pollut Res Int ; 30(10): 25325-25343, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35025041

ABSTRACT

At present, food security is a matter of debate of global magnitude and fulfilling the feeding requirement of > 8 billion human populations by 2030 is one of the major concerns of the globe. Aquaculture plays a significant role to meet the global food requirement. Shrimp species such as Litopenaeus vannamei, Penaeus monodon, and Macrobrachium rosenbergii are among the most popular food commodities worldwide. As per Global Outlook for Aquaculture Leadership survey, disease outbreaks have been a matter of concern from the past many decades regarding the shrimp aquaculture production. Among the past disease outbreaks, white spot disease caused by the white spot syndrome virus is considered to be one of the most devastating ones that caused colossal losses to the shrimp industry. Since the virus is highly contagious, it spreads gregariously among the shrimp population; hence, practicing proper sanitization practices is crucial in order to have disease-free shrimps. Additionally, in order to control the disease, antibiotics were used that further leads to bioaccumulation and biomagnification of antibiotics in several food webs. The bioaccumulation of the toxic residues in the food webs further adversely affected human too. Recently, immunostimulants/antivirals were used as an alternative to antibiotics. They were found to enhance the immune system of shrimps in eco-friendly manner. In context to this, the present paper presents a critical review on the immunostimulants available from plants, animals, and chemicals against WSSV in shrimps. Looking into this scenario, maintaining proper sanitation procedures in conjunction with the employment of immunostimulants may be a viable approach for preserving shrimp aquaculture across the globe.


Subject(s)
Palaemonidae , Penaeidae , Animals , Humans , Adjuvants, Immunologic , Aquaculture , Seafood
3.
J Biomol Struct Dyn ; 41(16): 7757-7767, 2023.
Article in English | MEDLINE | ID: mdl-36120991

ABSTRACT

White Spot disease is a devastating disease of shrimps caused by White Spot Syndrome Virus in multifarious shrimp species. At present there is no absolute medication to suppress the disease hence, there is an urgent need for development of drug against the virus. Molecular interaction between viral envelope protein VP28 and shrimp receptor protein especially chitins play a pivotal role in ingression of WSSV. In the present study, we have tried to shed light on structural aspects of lectin protein in Marsupenaeus japonicus (MjsvCL). A structural insight to the CTLD-domain of MjsvCL has facilitated the understanding of the binding mechanism between the two proteins that is responsible for entry of WSSV into shrimps. Further, incorporation of molecular dynamics simulation and MMPBSA studies revealed the affinity of binding and certain hotspot residues, which are critical for association of both the proteins. For the first time we have proposed that these amino acids are quintessential for formation of VP28-MjsvCL complex and play crucial role in entry of WSSV into shrimps. Targeting the interaction between VP28 and CTLD of MjsvCL may possibly serve as a potential drug target. The current study provides information for better understanding the interaction between VP28 and MjsvCL that could be a plausible site for future inhibitors against WSSV in shrimps.Communicated by Ramaswamy H. Sarma.

4.
Fish Shellfish Immunol ; 67: 141-146, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28587833

ABSTRACT

Host-parasite relationships can be best understood at the level of protein-protein interaction between host and pathogen. Such interactions are instrumental in understanding the important stages of life cycle of pathogen such as adsorption of the pathogen on host surface followed by effective entry of pathogen into the host body, movement of the pathogen across the host cytoplasm to reach the host nucleus and replication of the pathogen within the host. White Spot Disease (WSD) is a havoc for shrimps and till date no effective treatment is available against the disease. Moreover information regarding the mechanism of entry of White Spot Syndrome Virus (WSSV) into shrimps, as well as knowledge about the protein interactions occurring between WSSV and shrimp during viral entry are still at very meagre stage. A cumulative and critically assessed information on various viral-shrimp interactions occurring during viral entry can help to understand the exact pathway of entry of WSSV into the shrimp which in turn can be used to device drugs that can stop the entry of virus into the host. In this context, we highlight various WSSV and shrimp proteins that play role in the entry mechanism along with the description of the interaction between host and pathogen proteins.


Subject(s)
Penaeidae/virology , Virus Internalization , White spot syndrome virus 1/physiology , Animals , Host-Pathogen Interactions
5.
J Mol Model ; 19(3): 1285-94, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23179770

ABSTRACT

White spot disease is a devastating disease of shrimp Penaeus monodon in which the shrimp receptor protein PmRab7 interacts with viral envelop protein VP28 to form PmRab7-VP28 complex, which causes initiation of the disease. The molecular mechanism implicated in the disease, the dynamic behavior of proteins as well as interaction between both the biological counterparts that crafts a micro-environment feasible for entry of virus into the shrimp is still unknown. In the present study, we applied molecular modeling (MM), molecular dynamics (MD) and docking to compute surface mapping of infective amino acid residues between interacting proteins. Our result showed that α-helix of PmRab7 (encompassing Ser74, Ile143, Thr184, Arg53, Asn144, Thr184, Arg53, Arg79) interacts with ß-sheets of VP28 (containing Ser74, Ile143, Thr184, Arg53, Asn144, Thr184, Arg53, Arg79) and Arg69-Ser74, Val75-Ile143, Leu73-Ile143, Arg79-Asn144, Ala198-Ala182 bonds contributed in the formation of PmRab7-VP28 complex. Further studies on the amino acid residues and bonds may open new possibilities for preventing PmRab7-VP28 complex formation, thus reducing chances of WSD. The quantitative predictions provide a scope for experimental testing in future as well as endow with a straightforward evidence to comprehend cellular mechanisms underlying the disease.


Subject(s)
Penaeidae/virology , Viral Envelope Proteins/metabolism , White spot syndrome virus 1/metabolism , rab GTP-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Interaction Mapping , Viral Envelope Proteins/chemistry , rab GTP-Binding Proteins/chemistry , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL