Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(16)2023 08 19.
Article in English | MEDLINE | ID: mdl-37626911

ABSTRACT

Duchenne muscular dystrophy (DMD) is one of the most devastating myopathies, where severe inflammation exacerbates disease progression. Previously, we demonstrated that adiponectin (ApN), a hormone with powerful pleiotropic effects, can efficiently improve the dystrophic phenotype. However, its practical therapeutic application is limited. In this study, we investigated ALY688, a small peptide ApN receptor agonist, as a potential novel treatment for DMD. Four-week-old mdx mice were subcutaneously treated for two months with ALY688 and then compared to untreated mdx and wild-type mice. In vivo and ex vivo tests were performed to assess muscle function and pathophysiology. Additionally, in vitro tests were conducted on human DMD myotubes. Our results showed that ALY688 significantly improved the physical performance of mice and exerted potent anti-inflammatory, anti-oxidative and anti-fibrotic actions on the dystrophic muscle. Additionally, ALY688 hampered myonecrosis, partly mediated by necroptosis, and enhanced the myogenic program. Some of these effects were also recapitulated in human DMD myotubes. ALY688's protective and beneficial properties were mainly mediated by the AMPK-PGC-1α axis, which led to suppression of NF-κß and TGF-ß. Our results demonstrate that an ApN mimic may be a promising and effective therapeutic prospect for a better management of DMD.


Subject(s)
Adiponectin , Receptors, Adiponectin , Humans , Animals , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal , Fibrosis
2.
J Cachexia Sarcopenia Muscle ; 14(1): 464-478, 2023 02.
Article in English | MEDLINE | ID: mdl-36513619

ABSTRACT

BACKGROUND: Obesity among older adults has increased tremendously. Obesity accelerates ageing and predisposes to age-related conditions and diseases, such as loss of endurance capacity, insulin resistance and features of the metabolic syndrome. Namely, ectopic lipids play a key role in the development of nonalcoholic fatty liver disease (NAFLD) and myosteatosis, two severe burdens of ageing and metabolic diseases. Adiponectin (ApN) is a hormone, mainly secreted by adipocytes, which exerts insulin-sensitizing and fat-burning properties in several tissues including the liver and the muscle. Its overexpression also increases lifespan in mice. In this study, we investigated whether an ApN receptor agonist, AdipoRon (AR), could slow muscle dysfunction, myosteatosis and degenerative muscle markers in middle-aged obese mice. The effects on myosteatosis were compared with those on NAFLD. METHODS: Three groups of mice were studied up to 62 weeks of age: One group received normal diet (ND), another, high-fat diet (HFD); and the last, HFD combined with AR given orally for almost 1 year. An additional group of young mice under an ND was used. Treadmill tests and micro-computed tomography (CT) were carried out in vivo. Histological, biochemical and molecular analyses were performed on tissues ex vivo. Bodipy staining was used to assess intramyocellular lipid (IMCL) and lipid droplet morphology. RESULTS: AR did not markedly alter diet-induced obesity. Yet, this treatment rescued exercise endurance in obese mice (up to 2.4-fold, P < 0.05), an event that preceded the improvement of insulin sensitivity. Dorsal muscles and liver densities, measured by CT, were reduced in obese mice (-42% and -109%, respectively, P < 0.0001), suggesting fatty infiltration. This reduction tended to be attenuated by AR. Accordingly, AR significantly mitigated steatosis and cellular ballooning at liver histology, thereby decreasing the NALFD activity score (-30%, P < 0.05). AR also strikingly reversed IMCL accumulation either due to ageing in oxidative fibres (types 1/2a, soleus) or to HFD in glycolytic ones (types 2x/2b, extensor digitorum longus) (-50% to -85%, P < 0.05 or less). Size of subsarcolemmal lipid droplets, known to be associated with adverse metabolic outcomes, was reduced as well. Alleviation of myosteatosis resulted from improved mitochondrial function and lipid oxidation. Meanwhile, AR halved aged-related accumulation of dysfunctional proteins identified as tubular aggregates and cylindrical spirals by electron microscopy (P < 0.05). CONCLUSIONS: Long-term AdipoRon treatment promotes 'healthy ageing' in obese middle-aged mice by enhancing endurance and protecting skeletal muscle and liver against the adverse metabolic and degenerative effects of ageing and caloric excess.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Mice , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , X-Ray Microtomography , Obesity/complications , Obesity/drug therapy , Muscle, Skeletal/pathology , Insulin Resistance/physiology , Lipids
3.
Front Immunol ; 13: 1049076, 2022.
Article in English | MEDLINE | ID: mdl-36569900

ABSTRACT

Background: Duchenne muscular dystrophy (DMD) is the most common inherited human myopathy. Typically, the secondary process involving severe inflammation and necrosis exacerbate disease progression. Previously, we reported that the NLRP3 inflammasome complex plays a crucial role in this disorder. Moreover, pyroptosis, a form of programmed necrotic cell death, is triggered by NLRP3 via gasdermin D (GSDMD). So far, pyroptosis has never been described either in healthy muscle or in dystrophic muscle. The aim of this study was to unravel the role of NLRP3 inflammasome in DMD and explore a potentially promising treatment with MCC950 that selectively inhibits NLRP3. Methods: Four-week-old mdx mice (n=6 per group) were orally treated for 2 months with MCC950 (mdx-T), a highly potent, specific, small-molecule inhibitor of NLRP3, and compared with untreated (mdx) and wild-type (WT) mice. In vivo functional tests were carried out to measure the global force and endurance of mice. Ex vivo biochemical and molecular analyses were performed to evaluate the pathophysiology of the skeletal muscle. Finally, in vitro tests were conducted on primary cultures of DMD human myotubes. Results: After MCC950 treatment, mdx mice exhibited a significant reduction of inflammation, macrophage infiltration and oxidative stress (-20 to -65%, P<0.05 vs untreated mdx). Mdx-T mice displayed considerably less myonecrosis (-54%, P<0.05 vs mdx) and fibrosis (-75%, P<0.01 vs mdx). Moreover, a more mature myofibre phenotype, characterized by larger-sized fibres and higher expression of mature myosin heavy chains 1 and 7 was observed. Mdx-T also exhibited enhanced force and resistance to fatigue (+20 to 60%, P<0.05 or less). These beneficial effects resulted from MCC950 inhibition of both active caspase-1 (-46%, P=0.075) and cleaved gasdermin D (N-GSDMD) (-42% in medium-sized-fibres, P<0.001). Finally, the anti-inflammatory action and the anti-pyroptotic effect of MCC950 were also recapitulated in DMD human myotubes. Conclusion: Specific inhibition of the NLRP3 inflammasome can significantly attenuate the dystrophic phenotype. A novel finding of this study is the overactivation of GSDMD, which is hampered by MCC950. This ultimately leads to less inflammation and pyroptosis and to a better muscle maturation and function. Targeting NLRP3 might lead to an effective therapeutic approach for a better management of DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Animals , Mice , Muscular Dystrophy, Duchenne/drug therapy , Inflammasomes/metabolism , Mice, Inbred mdx , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Gasdermins , Muscle, Skeletal/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Inflammation/metabolism
4.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555721

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Muscular Dystrophy, Duchenne/genetics , Muscle, Skeletal/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Disease Models, Animal
5.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142143

ABSTRACT

The blood-brain barrier (BBB) is a selective barrier and a functional gatekeeper for the central nervous system (CNS), essential for maintaining brain homeostasis. The BBB is composed of specialized brain endothelial cells (BECs) lining the brain capillaries. The tight junctions formed by BECs regulate paracellular transport, whereas transcellular transport is regulated by specialized transporters, pumps and receptors. Cytokine-induced neuroinflammation, such as the tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), appear to play a role in BBB dysfunction and contribute to the progression of Alzheimer's disease (AD) by contributing to amyloid-ß (Aß) peptide accumulation. Here, we investigated whether TNF-α and IL-1ß modulate the permeability of the BBB and alter Aß peptide transport across BECs. We used a human BBB in vitro model based on the use of brain-like endothelial cells (BLECs) obtained from endothelial cells derived from CD34+ stem cells cocultivated with brain pericytes. We demonstrated that TNF-α and IL-1ß differentially induced changes in BLECs' permeability by inducing alterations in the organization of junctional complexes as well as in transcelluar trafficking. Further, TNF-α and IL-1ß act directly on BLECs by decreasing LRP1 and BCRP protein expression as well as the specific efflux of Aß peptide. These results provide mechanisms by which CNS inflammation might modulate BBB permeability and promote Aß peptide accumulation. A future therapeutic intervention targeting vascular inflammation at the BBB may have the therapeutic potential to slow down the progression of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Neoplasm Proteins/metabolism , Permeability
6.
Cells ; 10(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34831246

ABSTRACT

Over the last decade, innate immune system receptors and sensors called inflammasomes have been identified to play key pathological roles in the development and progression of numerous diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best characterized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have been broadly documented in numerous cardiovascular diseases. However, little is still known about NLRP3 implications in muscle disorders affecting non-cardiac muscles. In this review, we summarize and present the current knowledge regarding the function of NLRP3 in diseased skeletal muscle, and discuss the potential therapeutic options targeting the NLRP3 inflammasome in muscle disorders.


Subject(s)
Inflammasomes/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Animals , Humans , Models, Biological , Molecular Targeted Therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
7.
Int J Mol Sci ; 21(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023814

ABSTRACT

Alzheimer's disease (AD) is characterized by the abnormal accumulation of amyloid-ß (Aß) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aß across the blood-brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aß load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aß transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aß transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aß clearance. Finally, the combined use of KBs promotes Aß efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aß clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.


Subject(s)
Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Endothelial Cells/metabolism , Ketone Bodies/pharmacology , Biological Transport , Blood-Brain Barrier/drug effects , Brain/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Humans , In Vitro Techniques , Transcytosis
8.
Int J Mol Sci ; 20(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698745

ABSTRACT

Characterizing interaction of newly synthetized molecules with efflux pumps remains essential to improve their efficacy and safety. Caco-2 cell line cultivated on inserts is widely used for measuring apparent permeability of drugs across biological barriers, and for estimating their interaction with efflux pumps such as P-gp, BCRP and MRPs. However, this method remains time consuming and expensive. In addition, detection method is required for measuring molecule passage across cell monolayer and false results can be generated if drugs concentrations used are too high as demonstrated with quinidine. For this reason, we developed a new protocol based on the use of Caco-2 cell directly seeded on 96- or 384-well plates and the use of fluorescent substrates for efflux pumps. We clearly observed that the new method reduces costs for molecule screening and leads to higher throughput compared to traditional use of Caco-2 cell model. This accelerated model could provide quick feedback regarding the molecule design during the early stage of drug discovery and therefore reduce the number of compounds to be further evaluated using the traditional Caco-2 insert method.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Miniaturization , Caco-2 Cells , Cell Membrane Permeability/drug effects , Fluoresceins/metabolism , Humans , Quinidine/pharmacology , Rhodamine 123/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...