Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Immunotoxicol ; 19(1): 125-133, 2022 12.
Article in English | MEDLINE | ID: mdl-36422989

ABSTRACT

Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP in vitro by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 µm), at different concentrations ranging from 1 to 100 µg/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 µm PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These in vitro data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization.


Subject(s)
Monocytes , Polystyrenes , Humans , Polystyrenes/toxicity , Lymphocyte Activation , Adjuvants, Immunologic , Dendritic Cells
2.
Integr Environ Assess Manag ; 6(3): 378-89, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20821701

ABSTRACT

Fish full life cycle (FFLC) tests are increasingly required in the ecotoxicological assessment of endocrine active substances. However, FFLC tests have not been internationally standardized or validated, and it is currently unclear how such tests should best be designed to provide statistically sound and ecologically relevant results. This study describes how the technique of multi-criteria decision analysis (MCDA) was used to elicit the views of fish ecologists, aquatic ecotoxicologists and statisticians on optimal experimental designs for assessing the effects of endocrine active chemicals on fish. In MCDA qualitative criteria (that can be valued, but not quantified) and quantitative criteria can be used in a structured decision-making process. The aim of the present application of MCDA is to present a logical means of collating both data and expert opinions on the best way to focus FFLC tests on endocrine active substances. The analyses are presented to demonstrate how MCDA can be used in this context. Each of 3 workgroups focused on 1 of 3 species: fathead minnow (Pimephales promelas), Japanese medaka (Oryzias latipes), and zebrafish (Danio rerio). Test endpoints (e.g., fecundity, growth, gonadal histopathology) were scored for each species for various desirable features such as statistical power and ecological relevance, with the importance of these features determined by assigning weights to them, using a swing weighting procedure. The endpoint F1 fertilization success consistently emerged as a preferred option for all species. In addition, some endpoints scored highly in particular species, such as development of secondary sexual characteristics (fathead minnow) and sex ratio (zebrafish). Other endpoints such as hatching success ranked relatively highly and should be considered as useful endpoints to measure in tests with any of the fish species. MCDA also indicated relatively less preferred endpoints in fish life cycle tests. For example, intensive histopathology consistently ranked low, as did measurement of diagnostic biomarkers, such as vitellogenin, most likely due to the high costs of these methods or their limited ecological relevance. Life cycle tests typically do not focus on identifying toxic modes and/or mechanisms of action, but rather, single chemical concentration-response relationships for endpoints (e.g., survival, growth, reproduction) that can be translated into evaluation of risk. It is, therefore, likely to be an inefficient use of limited resources to measure these mechanism-specific endpoints in life cycle tests, unless the value of such endpoints for answering particular questions justifies their integration in specific case studies.


Subject(s)
Decision Support Techniques , Ecotoxicology/methods , Endocrine Disruptors/toxicity , Endpoint Determination/methods , Fishes/growth & development , Life Cycle Stages/drug effects , Toxicity Tests/methods , Animals , Female , Male
3.
Mar Pollut Bull ; 50(10): 1085-102, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15893330

ABSTRACT

Food chain accumulation of organochlorines and brominated flame retardants in estuarine and marine environments is compared to model estimations and fresh water field data. The food chain consists of herbivores, detritivores and primary and secondary carnivores i.e. fish, fish-eating birds and marine mammals. Accumulation of polychlorinated biphenyls is predicted well by OMEGA for herbi-detritivores and primary and secondary carnivorous fish. Ratios are similar to those found for fresh water species. Accumulation ratios for fish-eating birds and mammals are overestimated by the model, which is attributed partly to biotransformation of meta-para unsubstituted congeners. Additionally, birds may feed in other less polluted areas. For brominated diphenylethers (BDE) accumulation patterns are highly species and congener specific. Accumulation depends on both K(ow) and metabolization capacities. BDE47 is the predominant congener in lower trophic levels. For marine birds and mammals accumulation ratios of BDE99 and 100 are similar to or higher than ratios of persistent PCBs.


Subject(s)
Environmental Monitoring/statistics & numerical data , Flame Retardants/analysis , Food Chain , Hydrocarbons, Brominated/analysis , Hydrocarbons, Chlorinated/analysis , Models, Theoretical , Vertebrates/metabolism , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring/methods , Flame Retardants/pharmacokinetics , Hydrocarbons, Brominated/pharmacokinetics , Hydrocarbons, Chlorinated/pharmacokinetics , Species Specificity , Water Pollutants, Chemical/pharmacokinetics
4.
Chemosphere ; 49(1): 97-103, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12243336

ABSTRACT

In this study the actual presence of the suspected endocrine disrupter Bisphenol A (BPA) in water systems was studied in the Netherlands. BPA was shown to be present in Dutch surface water at levels up to 330 ng/l, and one occasional observation of 21 microg/l. During the three sampling periods, 60-80% of the samples, most from marine and estuarine locations, contained BPA levels below the limit of quantification (14-40 ng/l). At a selected number of locations the presence of BPA in fish was studied, which showed that BPA varied from 2 to 75 ng/g in the liver and 1 to 11 ng/g in the muscle. Based on present measured concentrations in surface water and on literature derived toxicity data it was concluded that ecotoxicological effects nor estrogenic effects are likely to occur in the field situation.


Subject(s)
Estrogens, Non-Steroidal/analysis , Fishes/metabolism , Phenols/analysis , Water Pollutants, Chemical/analysis , Animals , Benzhydryl Compounds , Chemistry Techniques, Analytical/methods , Estrogens, Non-Steroidal/metabolism , Fresh Water , Liver/chemistry , Liver/metabolism , Muscles/chemistry , Muscles/metabolism , Netherlands , Oceans and Seas , Phenols/pharmacokinetics , Risk Assessment , Water Pollutants, Chemical/pharmacokinetics
5.
Environ Toxicol Chem ; 21(1): 16-23, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11808534

ABSTRACT

A study was performed to optimize sample preparation and application of three in vitro assays for measuring estrogenic potency in environmental extracts. The three assays applied were an estrogen receptor (ER)-binding assay and two reporter gene effect assays: a yeast estrogen screen (YES) and the ER-mediated chemically activated luciferase gene expression (ER-CALUX) assay. All assays were able to detect estrogenicity, but the amounts of material needed for the assays differed greatly between the three assays (ER-binding assay >> YES > ER-CALUX). In addition, in the ER-binding assay, both agonists and antagonists give an estrogenic response, resulting in higher estradiol equivalency (EEQ) levels than both the ER-CALUX and the YES assay for the same samples. The EEQs found in wastewater treatment plants (WTPs) with the ER-CALUX assay were in the range of 4 to 440 and 0.11 to 59 pmol/L for influent and effluent, respectively. Water extracts from four large rivers had levels ranging from 0.25 to 1.72 pmol/L. Extracts from suspended matter and sludge contained estrogenic potency of 0.26 to 2.49 and 1.6 to 41 pmol EEQ/g dry weight, respectively. In WTPs, the average reduction of estrogenic potency in effluent compared to influent was 90 to 95% in municipal WTPs and about 50% in industrial WTPs. In influent, 30% of the ER-CALUX activity could not be explained by the calculated potencies based on chemical analysis of a number of known (xeno)estrogens; in effluent the unexplained fraction was 80%. These first results of analyzing estrogenic potency in WTP water and surface water in The Netherlands indicate that further studies are warranted to investigate the actual risks for aquatic systems.


Subject(s)
Biological Assay/methods , Environmental Monitoring/methods , Estrogens/analysis , Water Pollutants, Chemical/analysis , Animals , Binding, Competitive , Estradiol/pharmacology , Estrogens/toxicity , Female , Fresh Water/chemistry , Genes, Reporter , Humans , In Vitro Techniques , Luciferases/genetics , Netherlands , Rats , Receptors, Estrogen/metabolism , Sensitivity and Specificity , Sewage/chemistry , Tumor Cells, Cultured , Uterus/metabolism , Water Pollutants, Chemical/toxicity , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...