Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
J Clin Oncol ; 41(26): 4192-4199, 2023 Sep 10.
Article En | MEDLINE | ID: mdl-37672882

PURPOSE: To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression-based "intrinsic" subtypes luminal A, luminal B, HER2-enriched, and basal-like. METHODS: A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen. RESULTS: The intrinsic subtypes as discrete entities showed prognostic significance (P = 2.26E-12) and remained significant in multivariable analyses that incorporated standard parameters (estrogen receptor status, histologic grade, tumor size, and node status). A prognostic model for node-negative breast cancer was built using intrinsic subtype and clinical information. The C-index estimate for the combined model (subtype and tumor size) was a significant improvement on either the clinicopathologic model or subtype model alone. The intrinsic subtype model predicted neoadjuvant chemotherapy efficacy with a negative predictive value for pCR of 97%. CONCLUSION: Diagnosis by intrinsic subtype adds significant prognostic and predictive information to standard parameters for patients with breast cancer. The prognostic properties of the continuous risk score will be of value for the management of node-negative breast cancers. The subtypes and risk score can also be used to assess the likelihood of efficacy from neoadjuvant chemotherapy.

2.
Cancer Discov ; 12(1): 154-171, 2022 01.
Article En | MEDLINE | ID: mdl-34610950

Despite some success in secondary brain metastases, targeted or immune-based therapies have shown limited efficacy against primary brain malignancies such as glioblastoma (GBM). Although the intratumoral heterogeneity of GBM is implicated in treatment resistance, it remains unclear whether this diversity is observed within brain metastases and to what extent cancer cell-intrinsic heterogeneity sculpts the local immune microenvironment. Here, we profiled the immunogenomic state of 93 spatially distinct regions from 30 malignant brain tumors through whole-exome, RNA, and T-cell receptor sequencing. Our analyses identified differences between primary and secondary malignancies, with gliomas displaying more spatial heterogeneity at the genomic and neoantigen levels. In addition, this spatial diversity was recapitulated in the distribution of T-cell clones in which some gliomas harbored highly expanded but spatially restricted clonotypes. This study defines the immunogenomic landscape across a cohort of malignant brain tumors and contains implications for the design of targeted and immune-based therapies against intracranial malignancies. SIGNIFICANCE: This study describes the impact of spatial heterogeneity on genomic and immunologic characteristics of gliomas and brain metastases. The results suggest that gliomas harbor significantly greater intratumoral heterogeneity of genomic alterations, neoantigens, and T-cell clones than brain metastases, indicating the importance of multisector analysis for clinical or translational studies.This article is highlighted in the In This Issue feature, p. 1.


Brain Neoplasms/pathology , Glioblastoma/secondary , Receptors, Antigen, T-Cell/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Genomics , Glioblastoma/genetics , Glioblastoma/immunology , Humans , Immunotherapy , Neoplasm Metastasis , Tumor Microenvironment , Exome Sequencing
3.
Breast Cancer Res Treat ; 179(1): 197-206, 2020 Jan.
Article En | MEDLINE | ID: mdl-31542876

PURPOSE: Multi-gene signatures provide biological insight and risk stratification in breast cancer. Intrinsic molecular subtypes defined by mRNA expression of 50 genes (PAM50) are prognostic in hormone-receptor positive postmenopausal breast cancer. Yet, for 25-40% in the PAM50 intermediate risk group, long-term risk remains uncertain. Our study aimed to (i) test the long-term prognostic value of the PAM50 signature in pre- and post-menopausal breast cancer; (ii) investigate if the PAM50 model could be improved by addition of other mRNAs implicated in oncogenesis. METHODS: We used archived FFPE samples from 1723 breast cancer survivors; high quality reads were obtained on 1253 samples. Transcript expression was quantified using a custom codeset with probes for > 100 targets. Cox models assessed gene signatures for breast cancer relapse and survival. RESULTS: Over 15 + years of follow-up, PAM50 subtypes were (P < 0.01) associated with breast cancer outcomes after accounting for tumor stage, grade and age at diagnosis. Results did not differ by menopausal status at diagnosis. Women with Luminal B (versus Luminal A) subtype had a > 60% higher hazard. Addition of a 13-gene hypoxia signature improved prognostication with > 40% higher hazard in the highest vs lowest hypoxia tertiles. CONCLUSIONS: PAM50 intrinsic subtypes were independently prognostic for long-term breast cancer survival, irrespective of menopausal status. Addition of hypoxia signatures improved risk prediction. If replicated, incorporating the 13-gene hypoxia signature into the existing PAM50 risk assessment tool, may refine risk stratification and further clarify treatment for breast cancer.


Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cancer Survivors/statistics & numerical data , Gene Expression Profiling/methods , Adult , Aged , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Hypoxia , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Staging , Prognosis , Survival Analysis
4.
Cancer Epidemiol Biomarkers Prev ; 28(9): 1525-1533, 2019 09.
Article En | MEDLINE | ID: mdl-31186261

BACKGROUND: There is substantial variation in breast cancer survival rates, even among patients with similar clinical and genomic profiles. New biomarkers are needed to improve risk stratification and inform treatment options. Our aim was to identify novel miRNAs associated with breast cancer survival and quantify their prognostic value after adjusting for established clinical factors and genomic markers. METHODS: Using the Women's Healthy Eating and Living (WHEL) breast cancer cohort with >15 years of follow-up and archived tumor specimens, we assayed PAM50 mRNAs and 25 miRNAs using the Nanostring nCounter platform. RESULTS: We obtained high-quality reads on 1,253 samples (75% of available specimens) and used an existing research-use algorithm to ascertain PAM50 subtypes and risk scores (ROR-PT). We identified miRNAs significantly associated with breast cancer outcomes and then tested these in independent TCGA samples. miRNAs that were also prognostic in TCGA samples were further evaluated in multiple regression Cox models. We also used penalized regression for unbiased discovery. CONCLUSIONS: Two miRNAs, 210 and 29c, were associated with breast cancer outcomes in the WHEL and TCGA studies and further improved risk stratification within PAM50 risk groups: 10-year survival was 62% in the node-negative high miR-210-high ROR-PT group versus 75% in the low miR-210- high ROR-PT group. Similar results were obtained for miR-29c. We identified three additional miRNAs, 187-3p, 143-3p, and 205-5p, via penalized regression. IMPACT: Our findings suggest that miRNAs might be prognostic for long-term breast cancer survival and might improve risk stratification. Further research to incorporate miRNAs into existing clinicogenomic signatures is needed.


Breast Neoplasms/genetics , Adolescent , Adult , Aged , Breast Neoplasms/mortality , Female , Humans , Middle Aged , Survival Analysis , Young Adult
5.
Cancer Immunol Res ; 5(7): 516-523, 2017 07.
Article En | MEDLINE | ID: mdl-28619968

Next-generation sequencing technologies have provided insights into the biology and mutational landscape of cancer. Here, we evaluate the relevance of cancer neoantigens in human breast cancers. Using patient-derived xenografts from three patients with advanced breast cancer (xenografts were designated as WHIM30, WHIM35, and WHIM37), we sequenced exomes of tumor and patient-matched normal cells. We identified 2,091 (WHIM30), 354 (WHIM35), and 235 (WHIM37) nonsynonymous somatic mutations. A computational analysis identified and prioritized HLA class I-restricted candidate neoantigens expressed in the dominant tumor clone. Each candidate neoantigen was evaluated using peptide-binding assays, T-cell cultures that measure the ability of CD8+ T cells to recognize candidate neoantigens, and preclinical models in which we measured antitumor immunity. Our results demonstrate that breast cancer neoantigens can be recognized by the immune system, and that human CD8+ T cells enriched for prioritized breast cancer neoantigens were able to protect mice from tumor challenge with autologous patient-derived xenografts. We conclude that next-generation sequencing and epitope-prediction strategies can identify and prioritize candidate neoantigens for immune targeting in breast cancer. Cancer Immunol Res; 5(7); 516-23. ©2017 AACR.


Antigens, Neoplasm/immunology , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes/immunology , Animals , Antigens, Neoplasm/genetics , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Epitope Mapping , Epitopes/genetics , Exome/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Mice , Mutation/genetics , Mutation/immunology , T-Lymphocytes, Cytotoxic/immunology , Xenograft Model Antitumor Assays
6.
Article En | MEDLINE | ID: mdl-28691057

PAM50 intrinsic breast cancer subtypes are prognostic independent of standard clinicopathologic factors. CALGB 9741 demonstrated improved recurrence-free (RFS) and overall survival (OS) with 2-weekly dose-dense (DD) versus 3-weekly therapy. A significant interaction between intrinsic subtypes and DD-therapy benefit was hypothesized. Suitable tumor samples were available from 1,471 (73%) of 2,005 subjects. Multiplexed gene-expression profiling generated the PAM50 subtype call, proliferation score, and risk of recurrence score (ROR-PT) for the evaluable subset of 1,311 treated patients. The interaction between DD-therapy benefit and intrinsic subtype was tested in a Cox proportional hazards model using two-sided alpha = 0.05. Additional multivariable Cox models evaluated the proliferation and ROR-PT scores as continuous measures with selected clinical covariates. Improved outcomes for DD therapy in the evaluable subset mirrored results from the complete data set (RFS; hazard ratio = 1.20; 95% confidence interval = 0.99-1.44) with 12.3-year median follow-up. Intrinsic subtypes were prognostic of RFS (P < 0.0001) irrespective of treatment assignment. No subtype-specific treatment effect on RFS was identified (interaction P = 0.44). Proliferation and ROR-PT scores were prognostic for RFS (both P < 0.0001), but no association with treatment benefit was seen (P = 0.14 and 0.59, respectively). Results were similar for OS. The prognostic value of PAM50 intrinsic subtype was greater than estrogen receptor/HER2 immunohistochemistry classification. PAM50 gene signatures were highly prognostic but did not predict for improved outcomes with DD anthracycline- and taxane-based therapy. Clinical validation studies will assess the ability of PAM50 and other gene signatures to stratify patients and individualize treatment based on expected risks of distant recurrence.

7.
BMC Med Genomics ; 8: 54, 2015 Aug 22.
Article En | MEDLINE | ID: mdl-26297356

BACKGROUND: The four intrinsic subtypes of breast cancer, defined by differential expression of 50 genes (PAM50), have been shown to be predictive of risk of recurrence and benefit of hormonal therapy and chemotherapy. Here we describe the development of Prosigna™, a PAM50-based subtype classifier and risk model on the NanoString nCounter Dx Analysis System intended for decentralized testing in clinical laboratories. METHODS: 514 formalin-fixed, paraffin-embedded (FFPE) breast cancer patient samples were used to train prototypical centroids for each of the intrinsic subtypes of breast cancer on the NanoString platform. Hierarchical cluster analysis of gene expression data was used to identify the prototypical centroids defined in previous PAM50 algorithm training exercises. 304 FFPE patient samples from a well annotated clinical cohort in the absence of adjuvant systemic therapy were then used to train a subtype-based risk model (i.e. Prosigna ROR score). 232 samples from a tamoxifen-treated patient cohort were used to verify the prognostic accuracy of the algorithm prior to initiating clinical validation studies. RESULTS: The gene expression profiles of each of the four Prosigna subtype centroids were consistent with those previously published using the PCR-based PAM50 method. Similar to previously published classifiers, tumor samples classified as Luminal A by Prosigna had the best prognosis compared to samples classified as one of the three higher-risk tumor subtypes. The Prosigna Risk of Recurrence (ROR) score model was verified to be significantly associated with prognosis as a continuous variable and to add significant information over both commonly available IHC markers and Adjuvant! Online. CONCLUSIONS: The results from the training and verification data sets show that the FDA-cleared and CE marked Prosigna test provides an accurate estimate of the risk of distant recurrence in hormone receptor positive breast cancer and is also capable of identifying a tumor's intrinsic subtype that is consistent with the previously published PCR-based PAM50 assay. Subsequent analytical and clinical validation studies confirm the clinical accuracy and technical precision of the Prosigna PAM50 assay in a decentralized setting.


Breast Neoplasms/genetics , Gene Expression Profiling/methods , Genes, Neoplasm/genetics , Algorithms , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cluster Analysis , Feasibility Studies , Female , Humans , Machine Learning , Middle Aged , Prognosis , Recurrence , Risk , Tamoxifen/therapeutic use
8.
Arch Pathol Lab Med ; 138(11): 1507-13, 2014 Nov.
Article En | MEDLINE | ID: mdl-25357113

CONTEXT: Tubular carcinoma (TC) is a rare, luminal A subtype of breast carcinoma with excellent prognosis, for which adjuvant chemotherapy is usually contraindicated. OBJECTIVE: To examine the levels of estrogen receptor (ER) and progesterone receptor expression in cases of TC and well-differentiated invasive ductal carcinoma as compared to normal breast glands and to determine if any significant differences could be detected via molecular testing. DESIGN: We examined ER and progesterone receptor via immunohistochemistry in tubular (N = 27), mixed ductal/tubular (N = 16), and well-differentiated ductal (N = 27) carcinomas with comparison to surrounding normal breast tissue. We additionally performed molecular subtyping of 10 TCs and 10 ductal carcinomas via the PAM50 assay. RESULTS: Although ER expression was high for all groups, TC had statistically significantly lower ER staining percentage (ER%) (P = .003) and difference in ER expression between tumor and accompanying normal tissue (P = .02) than well-differentiated ductal carcinomas, with mixed ductal/tubular carcinomas falling between these 2 groups. Mean ER% was 79%, 87%, and 94%, and mean tumor-normal ER% differences were 13.6%, 25.9%, and 32.6% in tubular, mixed, and ductal carcinomas, respectively. Most tumors that had molecular subtyping were luminal A (9 of 10 tubular and 8 of 10 ductal), and no significant differences in specific gene expression between the 2 groups were identified. CONCLUSIONS: Tubular carcinoma exhibited decreased intensity in ER expression, closer to that of normal breast parenchyma, likely as a consequence of a high degree of differentiation. Lower ER% expression by TC may represent a potential pitfall when performing commercially available breast carcinoma prognostic assays that rely heavily on ER-related gene expression.


Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Receptors, Estrogen/metabolism , Adenocarcinoma/genetics , Adult , Aged , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Cell Differentiation , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Middle Aged , Molecular Typing , Receptors, Progesterone/metabolism
9.
Cell ; 150(2): 264-78, 2012 Jul 20.
Article En | MEDLINE | ID: mdl-22817890

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Clonal Evolution , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , DNA Mutational Analysis , Disease Progression , Female , Genome-Wide Association Study , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/physiopathology , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Recurrence , Skin/metabolism , Young Adult
10.
Clin Cancer Res ; 18(16): 4465-72, 2012 Aug 15.
Article En | MEDLINE | ID: mdl-22711706

PURPOSE: Gene expression profiling classifies breast cancer into intrinsic subtypes based on the biology of the underlying disease pathways. We have used material from a prospective randomized trial of tamoxifen versus placebo in premenopausal women with primary breast cancer (NCIC CTG MA.12) to evaluate the prognostic and predictive significance of intrinsic subtypes identified by both the PAM50 gene set and by immunohistochemistry. EXPERIMENTAL DESIGN: Total RNA from 398 of 672 (59%) patients was available for intrinsic subtyping with a quantitative reverse transcriptase PCR (qRT-PCR) 50-gene predictor (PAM50) for luminal A, luminal B, HER-2-enriched, and basal-like subtypes. A tissue microarray was also constructed from 492 of 672 (73%) of the study population to assess a panel of six immunohistochemical IHC antibodies to define the same intrinsic subtypes. RESULTS: Classification into intrinsic subtypes by the PAM50 assay was prognostic for both disease-free survival (DFS; P = 0.0003) and overall survival (OS; P = 0.0002), whereas classification by the IHC panel was not. Luminal subtype by PAM50 was predictive of tamoxifen benefit [DFS: HR, 0.52; 95% confidence interval (CI), 0.32-0.86 vs. HR, 0.80; 95% CI, 0.50-1.29 for nonluminal subtypes], although the interaction test was not significant (P = 0.24), whereas neither subtyping by central immunohistochemistry nor by local estrogen receptor (ER) or progesterone receptor (PR) status were predictive. Risk of relapse (ROR) modeling with the PAM50 assay produced a continuous risk score in both node-negative and node-positive disease. CONCLUSIONS: In the MA.12 study, intrinsic subtype classification by qRT-PCR with the PAM50 assay was superior to IHC profiling for both prognosis and prediction of benefit from adjuvant tamoxifen.


Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Gene Expression Profiling , Tamoxifen/therapeutic use , Adult , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Chemotherapy, Adjuvant , Female , Humans , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Recurrence , Treatment Outcome
11.
Nature ; 486(7403): 353-60, 2012 Jun 10.
Article En | MEDLINE | ID: mdl-22722193

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.


Aromatase Inhibitors/therapeutic use , Aromatase/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Genome, Human/genetics , Anastrozole , Androstadienes/pharmacology , Androstadienes/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA Repair , Exome/genetics , Exons/genetics , Female , Genetic Variation/genetics , Humans , Letrozole , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase Kinase 1/genetics , Mutation/genetics , Nitriles/pharmacology , Nitriles/therapeutic use , Receptors, Estrogen/metabolism , Treatment Outcome , Triazoles/pharmacology , Triazoles/therapeutic use
12.
Nature ; 481(7382): 506-10, 2012 Jan 11.
Article En | MEDLINE | ID: mdl-22237025

Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.


Clonal Evolution/genetics , Genome, Human/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , DNA Damage/drug effects , DNA Mutational Analysis , Genes, Neoplasm/genetics , Genome, Human/drug effects , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/drug therapy , Mutagenesis/drug effects , Mutagenesis/genetics , Recurrence , Reproducibility of Results
13.
JAMA ; 305(15): 1577-84, 2011 Apr 20.
Article En | MEDLINE | ID: mdl-21505136

CONTEXT: Whole-genome sequencing is becoming increasingly available for research purposes, but it has not yet been routinely used for clinical diagnosis. OBJECTIVE: To determine whether whole-genome sequencing can identify cryptic, actionable mutations in a clinically relevant time frame. DESIGN, SETTING, AND PATIENT: We were referred a difficult diagnostic case of acute promyelocytic leukemia with no pathogenic X-RARA fusion identified by routine metaphase cytogenetics or interphase fluorescence in situ hybridization (FISH). The case patient was enrolled in an institutional review board-approved protocol, with consent specifically tailored to the implications of whole-genome sequencing. The protocol uses a "movable firewall" that maintains patient anonymity within the entire research team but allows the research team to communicate medically relevant information to the treating physician. MAIN OUTCOME MEASURES: Clinical relevance of whole-genome sequencing and time to communicate validated results to the treating physician. RESULTS: Massively parallel paired-end sequencing allowed identification of a cytogenetically cryptic event: a 77-kilobase segment from chromosome 15 was inserted en bloc into the second intron of the RARA gene on chromosome 17, resulting in a classic bcr3 PML-RARA fusion gene. Reverse transcription polymerase chain reaction sequencing subsequently validated the expression of the fusion transcript. Novel FISH probes identified 2 additional cases of t(15;17)-negative acute promyelocytic leukemia that had cytogenetically invisible insertions. Whole-genome sequencing and validation were completed in 7 weeks and changed the treatment plan for the patient. CONCLUSION: Whole-genome sequencing can identify cytogenetically invisible oncogenes in a clinically relevant time frame.


Leukemia, Promyelocytic, Acute/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Receptors, Retinoic Acid/genetics , Sequence Analysis, DNA , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Adult , Chromosome Breakpoints , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 17/genetics , Gene Fusion , Genome, Human , Humans , Introns , Leukemia, Promyelocytic, Acute/therapy , Male , Promyelocytic Leukemia Protein , Retinoic Acid Receptor alpha , Reverse Transcriptase Polymerase Chain Reaction
14.
J Clin Invest ; 121(4): 1445-55, 2011 Apr.
Article En | MEDLINE | ID: mdl-21436584

Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). It is characterized by the t(15;17)(q22;q11.2) chromosomal translocation that creates the promyelocytic leukemia-retinoic acid receptor α (PML-RARA) fusion oncogene. Although this fusion oncogene is known to initiate APL in mice, other cooperating mutations, as yet ill defined, are important for disease pathogenesis. To identify these, we used a mouse model of APL, whereby PML-RARA expressed in myeloid cells leads to a myeloproliferative disease that ultimately evolves into APL. Sequencing of a mouse APL genome revealed 3 somatic, nonsynonymous mutations relevant to APL pathogenesis, of which 1 (Jak1 V657F) was found to be recurrent in other affected mice. This mutation was identical to the JAK1 V658F mutation previously found in human APL and acute lymphoblastic leukemia samples. Further analysis showed that JAK1 V658F cooperated in vivo with PML-RARA, causing a rapidly fatal leukemia in mice. We also discovered a somatic 150-kb deletion involving the lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) gene, in the mouse APL genome. Similar deletions were observed in 3 out of 14 additional mouse APL samples and 1 out of 150 human AML samples. In conclusion, whole genome sequencing of mouse cancer genomes can provide an unbiased and comprehensive approach for discovering functionally relevant mutations that are also present in human leukemias.


Leukemia, Promyelocytic, Acute/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , DNA, Neoplasm/genetics , Disease Progression , Humans , Janus Kinase 1/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Leukemia, Experimental/genetics , Mice , Mice, 129 Strain , Molecular Sequence Data , Mutation , Oncogene Proteins, Fusion/genetics , Polymorphism, Single Nucleotide , Sequence Deletion , Sequence Homology, Amino Acid
15.
N Engl J Med ; 363(25): 2424-33, 2010 Dec 16.
Article En | MEDLINE | ID: mdl-21067377

BACKGROUND: The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS: Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS: A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS: DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.).


DNA (Cytosine-5-)-Methyltransferases/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , DNA Methylation , DNA Methyltransferase 3A , DNA Mutational Analysis/methods , Female , Frameshift Mutation , Gene Expression , Humans , Karyotyping , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Nucleic Acid Amplification Techniques , Prognosis , Proportional Hazards Models , Survival Analysis
16.
Clin Cancer Res ; 16(21): 5222-32, 2010 Nov 01.
Article En | MEDLINE | ID: mdl-20837693

PURPOSE: To compare clinical, immunohistochemical (IHC), and gene expression models of prognosis applicable to formalin-fixed, paraffin-embedded blocks in a large series of estrogen receptor (ER)-positive breast cancers from patients uniformly treated with adjuvant tamoxifen. EXPERIMENTAL DESIGN: Quantitative real-time reverse transcription-PCR (qRT-PCR) assays for 50 genes identifying intrinsic breast cancer subtypes were completed on 786 specimens linked to clinical (median follow-up, 11.7 years) and IHC [ER, progesterone receptor (PR), HER2, and Ki67] data. Performance of predefined intrinsic subtype and risk-of-relapse scores was assessed using multivariable Cox models and Kaplan-Meier analysis. Harrell's C-index was used to compare fixed models trained in independent data sets, including proliferation signatures. RESULTS: Despite clinical ER positivity, 10% of cases were assigned to nonluminal subtypes. qRT-PCR signatures for proliferation genes gave more prognostic information than clinical assays for hormone receptors or Ki67. In Cox models incorporating standard prognostic variables, hazard ratios for breast cancer disease-specific survival over the first 5 years of follow-up, relative to the most common luminal A subtype, are 1.99 [95% confidence interval (CI), 1.09-3.64] for luminal B, 3.65 (95% CI, 1.64-8.16) for HER2-enriched subtype, and 17.71 (95% CI, 1.71-183.33) for the basal-like subtype. For node-negative disease, PAM50 qRT-PCR-based risk assignment weighted for tumor size and proliferation identifies a group with >95% 10-year survival without chemotherapy. In node-positive disease, PAM50-based prognostic models were also superior. CONCLUSION: The PAM50 gene expression test for intrinsic biological subtype can be applied to large series of formalin-fixed, paraffin-embedded breast cancers, and gives more prognostic information than clinical factors and IHC using standard cut points.


Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Carcinoma/diagnosis , Carcinoma/drug therapy , Neoplasm Staging/methods , Receptors, Estrogen/metabolism , Tamoxifen/therapeutic use , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/classification , Breast Neoplasms/metabolism , Carcinoma/classification , Carcinoma/metabolism , Diagnostic Techniques, Endocrine , Female , Humans , Immunohistochemistry/methods , Middle Aged , Prognosis
17.
Nature ; 464(7291): 999-1005, 2010 Apr 15.
Article En | MEDLINE | ID: mdl-20393555

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/genetics , Genome, Human/genetics , Mutation/genetics , Neoplasm Transplantation , Adult , Breast Neoplasms/pathology , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Disease Progression , Female , Gene Frequency/genetics , Genomics , Humans , Translocation, Genetic/genetics , Transplantation, Heterologous , alpha Catenin/genetics
18.
N Engl J Med ; 361(11): 1058-66, 2009 Sep 10.
Article En | MEDLINE | ID: mdl-19657110

BACKGROUND: The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS: We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS: We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS: By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , DNA Mutational Analysis , Female , Gene Frequency , Genome, Human , Humans , Male , Middle Aged , Nucleophosmin , Point Mutation , Sequence Analysis, DNA/methods
19.
J Clin Oncol ; 27(8): 1160-7, 2009 Mar 10.
Article En | MEDLINE | ID: mdl-19204204

UNLABELLED: PURPOSE To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression-based "intrinsic" subtypes luminal A, luminal B, HER2-enriched, and basal-like. METHODS A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen. RESULTS: The intrinsic subtypes as discrete entities showed prognostic significance (P = 2.26E-12) and remained significant in multivariable analyses that incorporated standard parameters (estrogen receptor status, histologic grade, tumor size, and node status). A prognostic model for node-negative breast cancer was built using intrinsic subtype and clinical information. The C-index estimate for the combined model (subtype and tumor size) was a significant improvement on either the clinicopathologic model or subtype model alone. The intrinsic subtype model predicted neoadjuvant chemotherapy efficacy with a negative predictive value for pCR of 97%. CONCLUSION Diagnosis by intrinsic subtype adds significant prognostic and predictive information to standard parameters for patients with breast cancer. The prognostic properties of the continuous risk score will be of value for the management of node-negative breast cancers. The subtypes and risk score can also be used to assess the likelihood of efficacy from neoadjuvant chemotherapy.


Breast Neoplasms/classification , Adult , Aged , Breast Neoplasms/drug therapy , Breast Neoplasms/etiology , Breast Neoplasms/mortality , Chemotherapy, Adjuvant , Female , Humans , Middle Aged , Neoplasm Recurrence, Local/etiology , Prognosis , Receptor, ErbB-2/analysis , Receptors, Estrogen/analysis , Reverse Transcriptase Polymerase Chain Reaction , Risk
...