Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
FEMS Microbiol Lett ; 369(1)2022 10 28.
Article in English | MEDLINE | ID: mdl-36208930

ABSTRACT

Despite the many challenges faced by the sudden adaptation of the teaching-learning processes during the emergency remote teaching (ERT) imposed by the COVID-19 pandemic, this period allowed the exploration of innovative educational methods. Here, we report the description and evaluation of a didactic activity designed to foster an active learning environment among Veterinary Medicine undergraduate students enrolling in Microbiology classes during the ERT period at the University of Minas Gerais. The activity consisted of initial expositive classes, followed by students' active search for information, and the execution of a report and short comics covering the topic. The activity was evaluated by a voluntary postquestionnaire. The results suggest that the students had good emotional and educational perception toward the task, and that they noticed the elaboration of the comics as the most valuable tool aiding in the retention of microbiological concepts. We conclude that the proposed strategy, specially by the incorporation of the comics, helped the meaningful learning of microbiology.


Subject(s)
COVID-19 , Pandemics , Humans , Students , Problem-Based Learning
2.
Front Cell Infect Microbiol ; 11: 708739, 2021.
Article in English | MEDLINE | ID: mdl-34277477

ABSTRACT

Leptospirosis is a neglected zoonosis, caused by pathogenic spirochetes bacteria of the genus Leptospira. The molecular mechanisms of leptospirosis infection are complex, and it is becoming clear that leptospires express several functionally redundant proteins to invade, disseminate, and escape the host's immune response. Here, we describe a novel leptospiral protein encoded by the gene LIC13086 as an outer membrane protein. The recombinant protein LIC13086 can interact with the extracellular matrix component laminin and bind plasminogen, thus possibly participating during the adhesion process and dissemination. Also, by interacting with fibrinogen and plasma fibronectin, the protein LIC13086 probably has an inhibitory effect in the fibrin clot formation during the infection process. The newly characterized protein can also bind molecules of the complement system and the regulator C4BP and, thus, might have a role in the evasion mechanism of Leptospira. Taken together, our results suggest that the protein LIC13086 may have a multifunctional role in leptospiral pathogenesis, participating in host invasion, dissemination, and immune evasion processes.


Subject(s)
Leptospira interrogans , Leptospira , Leptospirosis , Fibrin/metabolism , Humans , Leptospira interrogans/genetics , Leptospira interrogans/metabolism , Plasminogen/metabolism , Protein Binding
3.
Front Cell Infect Microbiol, v. 11, 708739, jul. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3903

ABSTRACT

Leptospirosis is a neglected zoonosis, caused by pathogenic spirochetes bacteria of the genus Leptospira. The molecular mechanisms of leptospirosis infection are complex, and it is becoming clear that leptospires express several functionally redundant proteins to invade, disseminate, and escape the host’s immune response. Here, we describe a novel leptospiral protein encoded by the gene LIC13086 as an outer membrane protein. The recombinant protein LIC13086 can interact with the extracellular matrix component laminin and bind plasminogen, thus possibly participating during the adhesion process and dissemination. Also, by interacting with fibrinogen and plasma fibronectin, the protein LIC13086 probably has an inhibitory effect in the fibrin clot formation during the infection process. The newly characterized protein can also bind molecules of the complement system and the regulator C4BP and, thus, might have a role in the evasion mechanism of Leptospira. Taken together, our results suggest that the protein LIC13086 may have a multifunctional role in leptospiral pathogenesis, participating in host invasion, dissemination, and immune evasion processes.

4.
Front Microbiol ; 11: 572972, 2020.
Article in English | MEDLINE | ID: mdl-33117318

ABSTRACT

Leptospirosis is a prevalent zoonotic disease, caused by bacteria of the genus Leptospira. Leptospirosis frequently leads to hemostatic disturbances, and the severe cases are marked by hemorrhages and low platelet number in circulation, which is associated with the patients' poor outcomes. Nevertheless, Leptospira-platelet interactions remain poorly explored. In this study, we performed a series of in vitro experiments evaluating whether leptospires induce human platelet aggregation, activation, and morphological changes. Platelets were incubated with virulent L. interrogans and the platelet outcomes were assessed by aggregometry, flow cytometry, and scanning and transmission electron microscopy. Our results show that leptospires alone do not induce platelet aggregation and activation, and induce platelet cytotoxic effects instead, by clearly inducing platelet disruption and detachment. We show for the first time that virulent leptospires do interact directly with platelets, an event that could trigger pathophysiological effects during the infection. This study might serve as a basis for the development of novel treatments for the disease.

5.
Microbiol Res ; 235: 126470, 2020 May.
Article in English | MEDLINE | ID: mdl-32247916

ABSTRACT

Leptospirosis is a global re-emerging zoonosis, caused by pathogenic bacteria of the genus Leptospira. Humans are infected mainly through contact with contaminated water or soil. The understanding of the molecular mechanisms of leptospirosis through the characterization of unknown outer membrane proteins may contribute to the development of new treatments, diagnostic methods and vaccines. We have identified using bioinformatics analysis a protein that is encoded by the gene LIC10774, predicted to be localized at the leptospiral outer membrane and exhibit beta-roll folding. Surface exposure was confirmed by flow cytometry, ELISA and immunofluorescence-based confocal microscopy. Through circular dichroism spectroscopy and hydrophobic dye binding we have shown that rLIC10774 binds calcium ions, which imposes changes to secondary and tertiary structures. The recombinant protein was capable of binding to several host extracellular matrix and serum components. Therefore, we describe LIC10774 as a calcium-binding protein exposed in the outer surface of pathogenic leptospires with possible multifunctional roles in adhesion to host tissues, evasion of the immune system and participation in dissemination processes during leptospirosis. In addition, we hypothesize that the calcium binding is important for temperature-dependent functional roles during leptospirosis.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Calcium/metabolism , Host-Pathogen Interactions , Leptospira interrogans/genetics , Animals , Bacterial Adhesion , Bacterial Outer Membrane Proteins/genetics , Cloning, Molecular , Computational Biology , Female , Humans , Leptospira interrogans/pathogenicity , Mice , Mice, Inbred BALB C , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/immunology
6.
Med Microbiol Immunol ; 209(2): 201-213, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32078713

ABSTRACT

Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.


Subject(s)
Bacterial Proteins/metabolism , Fibrinogen/metabolism , Leptospira interrogans/enzymology , Platelet Aggregation/physiology , Serine Proteases/metabolism , Bacterial Proteins/genetics , Blood Coagulation , Factor V/metabolism , Factor Xa/metabolism , Humans , Leptospira interrogans/genetics , Leptospira interrogans/metabolism , Leptospira interrogans/pathogenicity , Recombinant Proteins/metabolism , Serine Proteases/genetics , von Willebrand Factor/metabolism
7.
Front Microbiol, v. 11, 572972, set. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3298

ABSTRACT

Leptospirosis is a prevalent zoonotic disease, caused by bacteria of the genus Leptospira. Leptospirosis frequently leads to hemostatic disturbances, and the severe cases are marked by hemorrhages and low platelet number in circulation, which is associated with the patients’ poor outcomes. Nevertheless, Leptospira-platelet interactions remain poorly explored. In this study, we performed a series of in vitro experiments evaluating whether leptospires induce human platelet aggregation, activation, and morphological changes. Platelets were incubated with virulent L. interrogans and the platelet outcomes were assessed by aggregometry, flow cytometry, and scanning and transmission electron microscopy. Our results show that leptospires alone do not induce platelet aggregation and activation, and induce platelet cytotoxic effects instead, by clearly inducing platelet disruption and detachment. We show for the first time that virulent leptospires do interact directly with platelets, an event that could trigger pathophysiological effects during the infection. This study might serve as a basis for the development of novel treatments for the disease.

8.
Microbiol Res, v. 235, 126470, may. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3001

ABSTRACT

Leptospirosis is a global re-emerging zoonosis, caused by pathogenic bacteria of the genus Leptospira. Humans are infected mainly through contact with contaminated water or soil. The understanding of the molecular mechanisms of leptospirosis through the characterization of unknown outer membrane proteins may contribute to the development of new treatments, diagnostic methods and vaccines. We have identified using bioinformatics analysis a protein that is encoded by the gene LIC10774, predicted to be localized at the leptospiral outer membrane and exhibit beta-roll folding. Surface exposure was confirmed by flow cytometry, ELISA and immunofluorescence-based confocal microscopy. Through circular dichroism spectroscopy and hydrophobic dye binding we have shown that rLIC10774 binds calcium ions, which imposes changes to secondary and tertiary structures. The recombinant protein was capable of binding to several host extracellular matrix and serum components. Therefore, we describe LIC10774 as a calcium-binding protein exposed in the outer surface of pathogenic leptospires with possible multifunctional roles in adhesion to host tissues, evasion of the immune system and participation in dissemination processes during leptospirosis. In addition, we hypothesize that the calcium binding is important for temperature-dependent functional roles during leptospirosis

9.
Crit Rev Microbiol, v. 46, n. 2, p. 121-135, mar. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2964

ABSTRACT

Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.

10.
Med Microbiol Immunol, v. 209, p. 201-213, fev. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2953

ABSTRACT

Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.

11.
Vaccine, v. 37, 30, p. 3961-3973, jul. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2913

ABSTRACT

Leptospirosis is a neglected infectious disease of global importance. Vaccination is the most viable strategy for the control of leptospirosis, but in spite of efforts for the development of an effective vaccine against the disease, few advances have been made, and to date, bacterin is the only option for prevention of leptospirosis. Bacterins are formulations based on inactivated leptospires that present a series of drawbacks, such as serovar-dependence and short-term immunity. Therefore, bacterins are not widely used in humans, and only Cuba, France and China have these vaccines licensed for at-risk populations. The development of recombinant DNA technology emerges as an alternative to solve the problem. Recombinant protein-based vaccines or DNA vaccines seem to be an attractive strategy, but the use of adjuvants is critical for achievement of a protective immune response. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells. In the last years, several components have been tested as adjuvants, such as aluminum salts, oil based-emulsion adjuvants, bacteria-derived components and liposomes. This review highlights the use of adjuvants in the multiple vaccine approaches that have been used for leptospirosis and their most important immunological aspects. Immune response data generated by these strategies can contribute to the understanding of the immune mechanisms involved in protection against leptospirosis, and consequently, the development of effective vaccines against this disease. This is the first review on leptospiral vaccines focusing on adjuvant aspects.

12.
J infect dis, v. 219, n. 6, p. 996-1006, mar. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2698

ABSTRACT

Background Leptospirosis, caused by spirochetes of the genus Leptospira, is one of the most widespread zoonoses worldwide. Efficient diagnostic methods for early diagnosis of leptospirosis are still lacking, and acute disease presents with nonspecific symptomatology and is often misdiagnosed. The leptospires pathogenic processes and virulence mechanisms remain virtually unknown. In severe infections, hemostatic impairment is frequently observed, and pathophysiological complications often develop when the host response is modulated by the pathogen. The neutrophil heparin-binding protein (HBP) is an inflammatory mediator and potent inducer of vascular leakage. Results In this study, we found that leptospires and their secreted products induce the release of HBP from stimulated neutrophils through a controlled degranulation mechanism. We acknowledged 2 leptospiral proteins as able to induce HBP degranulation. These findings have clinical implications, as high levels of HBP were detected in serum from patients with leptospirosis, especially at the early phase of the disease. Conclusion In conclusion, we describe a new mechanism by which the leptospirosis pathophysiological complications may arise, such as vascular leakage and edema formation. We also propose HBP as a new early screening biomarker for human leptospirosis.

13.
FASEB J, v. 33, n. 2, p. 2599-2609, jan. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2666

ABSTRACT

Neutrophil recruitment and plasma exudation are key elements in the immune response to injury or infection. Activated neutrophils stimulate opening of the endothelial barrier; however, the underlying mechanisms have remained largely unknown. In this study, we identified a pivotal role of the proinflammatory kallikrein-kinin system and consequent formation of bradykinin in neutrophil-evoked vascular leak. In mouse and hamster models of acute inflammation, inhibitors of bradykinin generation, and signaling markedly reduced plasma exudation in response to chemoattractant activation of neutrophils. The neutrophil-driven leak was likewise suppressed in mice deficient in either the bradykinin B-2 receptor or factor XII (initiator of the kallikrein-kinin system). In human endothelial cell monolayers, material secreted from activated neutrophils induced cytoskeletal rearrangement, leading to paracellular gap formation in a bradykinin-dependent manner. As a mechanistic basis, we found that a neutrophil-derived heparin-binding protein (HBP/azurocidin) displaced the bradykinin precursor high-molecular-weight kininogen from endothelial cells, thereby enabling proteolytic processing of kininogen into bradykinin by neutrophil and plasma proteases. These data provide novel insight into the signaling pathway by which neutrophils open up the endothelial barrier and identify the kallikrein-kinin system as a target for therapeutic interventions in acute inflammatory reactions.Kenne, E., Rasmuson, J., Renne, T., Vieira, M. L., Muller-Esterl, W., Herwald, H., Lindbom, L. Neutrophils engage the kallikrein-kinin system to open up the endothelial barrier in acute inflammation.

15.
Virulence, v. 9, n. 1, p. 414-425, mar. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2438

ABSTRACT

Leptospirosis is a widespread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. After entrance in the host, pathogenic leptospires evade the host natural defense mechanisms in order to propagate and disseminate to multiple organs. Myeloperoxidase is an enzyme stored in neutrophils azurophilic granules, and is released upon neutrophil activation to produce mainly hypochlorous acid, a strong oxidant and potent antimicrobial agent. In the present investigation, we studied the modulation of myeloperoxidase activity by L. interrogans serovar Copenhageni. We show that leptospires and their culture supernatants are able to inhibit both peroxidase and chlorination activities of myeloperoxidase, without interfering with neutrophil degranulation. By leptospiral outer membrane protein extraction and fractionation, we identified the proteins LipL21 and LipL45 as myeloperoxidase inhibitors, constituting new Leptospira virulence factors. Accordingly, we propose a function for the protein LipL21, one of the most expressed leptospiral outer membrane proteins. Our results show a novel innate immune evasion mechanism by which leptospires interfere with the host response in order to cope with the host oxidative stress and efficiently achieve dissemination and colonization.

16.
Crit Rev Microbiol ; 42(4): 573-87, 2016 Aug.
Article in English | MEDLINE | ID: mdl-25914944

ABSTRACT

The pathogenic spirochetes Borrelia burgdorferi, B. hermsii, B. recurrentis, Treponema denticola and Leptospira spp. are the etiologic agents of Lyme disease, relapsing fever, periodontitis and leptospirosis, respectively. Lyme borreliosis is a multi-systemic disorder and the most prevalent tick-borne disease in the northern hemisphere. Tick-borne relapsing fever is persistent in endemic areas worldwide, representing a significant burden in some African regions. Periodontal disease, a chronic inflammatory disorder that often leads to tooth loss, is caused by several potential pathogens found in the oral cavity including T. denticola. Leptospirosis is considered the most widespread zoonosis, and the predominant human disease in tropical, undeveloped regions. What these diseases have in common is that they are a significant burden to healthcare costs in the absence of prophylactic measures. This review addresses the interaction of these spirochetes with the fibrinolytic system, plasminogen (Plg) binding to the surface of bacteria and the generation of plasmin (Pla) on their surface. The consequences on host-pathogen interactions when the spirochetes are endowed with this proteolytic activity are discussed on the basis of the results reported in the literature. Spirochetes equipped with Pla activity have been shown to degrade extracellular matrix (ECM) components, in addition to digesting fibrin, facilitating bacterial invasion and dissemination. Pla generation triggers the induction of matrix metalloproteases (MMPs) in a cascade of events that enhances the proteolytic capacity of the spirochetes. These activities in concert with the interference exerted by the Plg/Pla on the complement system - helping the bacteria to evade the immune system - should illuminate our understanding of the mechanisms involved in host infection.


Subject(s)
Borrelia/pathogenicity , Fibrinolysis , Host-Pathogen Interactions , Leptospira/pathogenicity , Treponema denticola/pathogenicity , Borrelia/metabolism , Fibrinolysin/metabolism , Humans , Immune Evasion , Leptospira/metabolism , Matrix Metalloproteinases/metabolism , Plasminogen/metabolism , Protein Binding , Proteolysis , Treponema denticola/metabolism
17.
J Proteomics ; 94: 460-72, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24176787

ABSTRACT

Viperidae venom glands have a basal-central lumen where the venom produced by secretory cells is stored. We have shown that the protein composition of venom gland changes during the venom production cycle. Here, we analyzed the venom gland proteins during the venom production cycle by proteomic approach. We identified specific proteins in each stage of the cycle. Protein species from endoplasmic reticulum (PDI and GPR78) and cytoplasm (actin, vimentin, tropomyosin, proteasome subunit alpha type-1, thioredoxin, and 40S ribosomal protein) are more abundant in the activated stage, probably increasing the synthesis and secretion of toxins. We also showed for the first time that many toxins are present in the secretory cells during the quiescent stage. C-type lectin-like and serine proteinases were more abundant in the quiescent stage, and GPIb-BP and coagulation factor IX/X were present only in this stage. Metalloproteinases, L-amino acid oxidases, PLA2 and snake venom metalloproteinase and PLA2 inhibitors, and disintegrins were more abundant in the activated stage. Regarding metalloproteinases, the presence of peptides corresponding to the pro-domain was observed. These results allow us to better understand the mechanism of venom gland activation and venom production, contributing to studies about snake toxins and their diversity. BIOLOGICAL SIGNIFICANCE: In this study we identified, for the first time, the presence of different toxins in the snake venom gland in its quiescent stage. Furthermore, we showed that not all toxins are synthesized during the activated stage of the gland, suggesting an asynchronous synthesis for different toxins. Besides, the synthesis of some protein species from endoplasmic reticulum and cytoplasm, which are related to the synthesis and secretion processes, are more abundant in the activated stage of this gland. The knowledge of the proteomic composition of the venom gland in different stages of the venom production cycle will give us new insights into the mechanism of venom gland activation and venom production, contributing to studies about snake toxins and their diversity.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/biosynthesis , Exocrine Glands/metabolism , Proteome/biosynthesis , Animals
SELECTION OF CITATIONS
SEARCH DETAIL