Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20453, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650072

ABSTRACT

While the cultivated area of pollinator-dependent crops is increasing, pollinator availability is decreasing, leading to problems in many agroecosystems. For this reason, pollinator-dependent crop growers often rent beehives to support their pollination requirements to sustain fruit productivity. However, the efficiency of those pollination systems has not been extensively studied. Here, we compared the effect of "precision" pollination (i.e., application of pesticides coordinated with growers, audit of hives, dietary supplementation and individual distribution of hives) with conventional practices (i.e., pesticides applications without coordination with growers and no audit of hives, low maintenance of hives and hives distributed in large groups) on the mean level of pollination and fruit production and quality in blueberry crops. In nine blueberry fields, we measured bee visitation rate to flowers, fruit set, fruit firmness and fruit weight. On average, precision-pollinated plots had 70% more bee visits to flowers and produced 13% more fruits that were 12% heavier and 12% firmer than those obtained through conventional practices. These results showed that pollination efficiency could be improved if key management related to bee strength, distribution and health care are taken into account. Due to these results, we encourage growers and beekeepers to include precision pollination practices to both increase the productivity of blueberry fields and the wellbeing of honey bees within agroecosystems.


Subject(s)
Blueberry Plants , Crop Production/methods , Pollination , Animals , Bees , Fruit
3.
Biol Chem Hoppe Seyler ; 369(5): 397-401, 1988 May.
Article in English | MEDLINE | ID: mdl-3166744

ABSTRACT

The effect of secondary-subsite interactions on the catalytic efficiency of horse urinary kallikrein was studied using as substrates oligopeptides and peptidyl-4-nitroanilides with L-Arg at P1. The known secondary specificity of tissue kallikreins for hydrophobic residues at P2 was also demonstrated for horse urinary kallikrein and a higher preference of this enzyme for L-Phe over L-Leu at P2 was evident. Interaction of subsites S3 with D-Pro and D-Phe enhanced the catalytic efficiency but tripeptidyl-4-nitroanilides with acetyl-D-Pro, L-Pro and acetyl-L-Pro at P3 were no better substrates than acetyl-dipeptidyl-4-nitroanilides. The importance of the leaving group for the catalysis was proved by higher kcat/Km values for the peptides in relation to peptidyl-4-nitroanilides containing a common acyl-chain. The low kcat value for the peptide with L-Pro at P'2 stresses the importance of a hydrogen bond between P'2 amide and the carbonyl group at S'2. One L-arginine residue at the leaving group, specially at the P'2 position, decreases the value of the apparent Km. This effect resulting of side-chain interactions with S'2, is impaired by a second L-Arg at P'1.


Subject(s)
Kallikreins/urine , Animals , Binding Sites , Horses , Kallikreins/isolation & purification , Kinetics , Protein Binding , Substrate Specificity
4.
Biochemistry ; 26(16): 5032-5, 1987 Aug 11.
Article in English | MEDLINE | ID: mdl-3663643

ABSTRACT

Hydrolysis of several N alpha-substituted L-arginine 4-nitroanilides with porcine pancreatic kallikrein was studied under different conditions of pH, temperature, and salt concentration. At high substrate concentrations a deviation from Michaelis-Menten kinetics was observed with a significant increase in the hydrolysis rates of almost all substrates. Kinetic data were analyzed on the assumption that porcine pancreatic kallikrein presents an additional binding site with lower affinity for the substrate. Binding to this auxiliary site gives rise to a modulated enzyme species which can hydrolyze an additional molecule of the substrate through a second catalytic pathway. The values of both Michaelis-Menten and catalytic rate constants were higher for the modulated species than for the free enzyme, suggesting a mechanism of enzyme activation by substrate. Kinetic data indicated similar substrate requirements for binding at the primary and auxiliary sites of the enzyme. Tris(hydroxymethyl)aminomethane hydrochloride and NaCl were shown to alter the kinetic parameters of the hydrolysis of N alpha-acetyl-L-Phe-L-Arg 4-nitroanilide by porcine pancreatic kallikrein but not the enzyme activation pattern (ratio of the catalytic constants for the activated and the free enzyme forms). Similar observations were made when the hydrolysis of D-Val-L-Leu-L-Arg 4-nitroanilide was studied under different pH and temperature conditions.


Subject(s)
Anilides/metabolism , Kallikreins/metabolism , Oligopeptides/metabolism , Pancreas/enzymology , Animals , Enzyme Activation , Kinetics , Substrate Specificity , Swine , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL