Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Plant Physiol Biochem ; 215: 109077, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39213946

ABSTRACT

Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO42-, NO3-, PO43-, and K+ in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.


Subject(s)
Droughts , Minerals , Triticum , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Minerals/metabolism , Genotype , Adaptation, Physiological/genetics , Drought Resistance
2.
Plant Cell Environ ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924092

ABSTRACT

The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.

3.
Plant Physiol Biochem ; 201: 107838, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37364510

ABSTRACT

Perennial plants are frequently exposed to severe and prolonged drought, and when the balance between water transport and transpirational demand is compromised trees are in danger of embolism formation. To maintain the physiological balance, plants can rely on mechanisms to quickly recover the lost xylem hydraulic capacity and reduce the prolonged impact on photosynthetic activity upon rehydration. Among factors helpful for plants to sustain acclimation and adaptation responses to drought and promote recovery, maintaining an optimal nutritional status is crucial for plant survival. This study aimed to investigate the physiological and biochemical responses under drought and recovery of Populus nigra plants grown in soil with impaired nutrient bioavailability obtained by adding calcium oxide (CaO) to the substrate. Although the CaO treatment did not affect plant growth, in well-watered conditions, treated poplars displayed an impaired inorganic ions profile in tissues. Under drought, although CaO-treated and untreated plants showed similar physiological responses, the former closed the stomata earlier. During water stress relief, the CaO-treated poplars exhibited a faster stomatal opening and a higher capacity to restore xylem hydraulic conductivity compared to not-treated plants, probably due to the higher osmolyte accumulation during drought. The content of some inorganic ions (e.g, Ca2+ and Cl-) was also higher in the xylem sap collected from stressed CaO-treated plants, thus contributing to increase the osmotic gradient necessary for the recovery. Taken together, our results suggest that CaO treatment promotes a faster and more efficient plant recovery after drought due to a modulation of ions homeostasis.


Subject(s)
Droughts , Populus , Soil/chemistry , Plant Leaves/physiology , Populus/physiology , Ions , Xylem/physiology
4.
New Phytol ; 239(1): 271-285, 2023 07.
Article in English | MEDLINE | ID: mdl-37167003

ABSTRACT

Coffee is one of the most traded commodities world-wide. As with 70% of land plants, coffee is associated with arbuscular mycorrhizal (AM) fungi, but the molecular bases of this interaction are unknown. We studied the mycorrhizal phenotype of two commercially important Coffea arabica cultivars ('Typica National' and 'Catimor Amarillo'), upon Funnelliformis mosseae colonisation grown under phosphorus limitation, using an integrated functional approach based on multi-omics, physiology and biochemistry. The two cultivars revealed a strong biomass increase upon mycorrhization, even at low level of fungal colonisation, improving photosynthetic efficiency and plant nutrition. The more important iconic markers of AM symbiosis were activated: We detected two gene copies of AM-inducible phosphate (Pt4), ammonium (AM2) and nitrate (NPF4.5) transporters, which were identified as belonging to the C. arabica parental species (C. canephora and C. eugenioides) with both copies being upregulated. Transcriptomics data were confirmed by ions and metabolomics analyses, which highlighted an increased amount of glucose, fructose and flavonoid glycosides. In conclusion, both coffee cultivars revealed a high responsiveness to the AM fungus along their root-shoot axis, showing a clear-cut re-organisation of the major metabolic pathways, which involve nutrient acquisition, carbon fixation, and primary and secondary metabolism.


Subject(s)
Coffea , Mycorrhizae , Mycorrhizae/genetics , Coffea/genetics , Coffee/metabolism , Photosynthesis , Gene Expression Profiling
5.
Plant J ; 115(1): 127-138, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36976541

ABSTRACT

Over the past few decades, a close relationship between sulfur (S) and iron (Fe) in terms of functionality and nutrition was demonstrated in the tomato. However, very little is known about the regulatory mechanisms underlying S/Fe interactions. Recently, the potential role of citrate in plant adaptation to Fe deficiency and combined S and Fe deficiency has been described. It is known that an impaired organic acid metabolism may stimulate a retrograde signal, which has been proven to be linked to the Target of Rapamycin (TOR) signaling in yeast and animal cells. Recent reports provided evidence of TOR involvement in S nutrient sensing in plants. This suggestion prompted us to investigate whether TOR may play a role in the cross-talk of signaling pathway occurring during plant adaptation to combined nutrient deficiency of Fe and S. Our results revealed that Fe deficiency elicited an increase of TOR activity associated with enhanced accumulation of citrate. In contrast, S deficiency resulted in decreased TOR activity and citrate accumulation. Interestingly, citrate accumulated in shoots of plants exposed to combined S/Fe deficiency to values between those found in Fe- and S-deficient plants, again correlated with TOR activity level. Our results suggest that citrate might be involved in establishing a link between plant response to combined S/Fe deficiency and the TOR network.


Subject(s)
Iron Deficiencies , Solanum lycopersicum , Iron/metabolism , Sulfur/metabolism , Citric Acid/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769217

ABSTRACT

Plants evolved in the presence of the Earth's magnetic field (or geomagnetic field, GMF). Variations in MF intensity and inclination are perceived by plants as an abiotic stress condition with responses at the genomic and metabolic level, with changes in growth and developmental processes. The reduction of GMF to near null magnetic field (NNMF) values by the use of a triaxial Helmholtz coils system was used to evaluate the requirement of the GMF for Lima bean (Phaseolus lunatus L.) photosynthesis and reactive oxygen species (ROS) production. The leaf area, stomatal density, chloroplast ultrastructure and some biochemical parameters including leaf carbohydrate, total carbon, protein content and δ13C were affected by NNMF conditions, as were the chlorophyll and carotenoid levels. RubisCO activity and content were also reduced in NNMF. The GMF was required for the reaction center's efficiency and for the reduction of quinones. NNMF conditions downregulated the expression of the MagR homologs PlIScA2 and PlcpIScA, implying a connection between magnetoreception and photosynthetic efficiency. Finally, we showed that the GMF induced a higher expression of genes involved in ROS production, with increased contents of both H2O2 and other peroxides. Our results show that, in Lima bean, the GMF is required for photosynthesis and that PlIScA2 and PlcpIScA may play a role in the modulation of MF-dependent responses of photosynthesis and plant oxidative stress.


Subject(s)
Glia Maturation Factor , Phaseolus , Reactive Oxygen Species/metabolism , Glia Maturation Factor/metabolism , Phaseolus/genetics , Phaseolus/metabolism , Hydrogen Peroxide/metabolism , Photosynthesis/genetics , Chlorophyll/metabolism , Plant Leaves/metabolism
7.
Plants (Basel) ; 11(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336686

ABSTRACT

Durum wheat is one of the most important agricultural crops, currently providing 18% of the daily intake of calories and 20% of daily protein intake for humans. However, being wheat that is cultivated in arid and semiarid areas, its productivity is threatened by drought stress, which is being exacerbated by climate change. Therefore, the identification of drought tolerant wheat genotypes is critical for increasing grain yield and also improving the capability of crops to uptake and assimilate nutrients, which are seriously affected by drought. This work aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) on plant growth under normal and limited water availability in two durum wheat genotypes (Svevo and Etrusco). Furthermore, we investigated how the plant nutritional status responds to drought stress. We found that the response of Svevo and Etrusco to drought stress was differentially affected by AMF. Interestingly, we revealed that AMF positively affected sulfur homeostasis under drought conditions, mainly in the Svevo cultivar. The results provide a valuable indication that the identification of drought tolerant plants cannot ignore their nutrient use efficiency or the impact of other biotic soil components (i.e., AMF).

8.
FEMS Microbiol Ecol ; 98(2)2022 02 26.
Article in English | MEDLINE | ID: mdl-35150249

ABSTRACT

Plastic mulch film residues have been accumulating in agricultural soils for decades, but so far, little is known about its consequences on soil microbial communities and functions. Here, we tested the effects of plastic residues of low-density polyethylene and biodegradable mulch films on soil suppressiveness and microbial community composition. We investigated how plastic residues in a Fusarium culmorum suppressive soil affect the level of disease suppressiveness, plant biomass, nutrient status, and microbial communities in rhizosphere using a controlled pot experiment. The addition of 1% plastic residues to the suppressive soil did not affect the level of suppression and the disease symptoms index. However, we did find that plant biomasses decreased, and that plant nutrient status changed in the presence of plastic residues. No significant changes in bacterial and fungal rhizosphere communities were observed. Nonetheless, bacterial and fungal communities closely attached to the plastisphere were very different from the rhizosphere communities with overrepresentation of potential plant pathogens. The plastisphere revealed a high abundance of specific bacterial phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) and fungal genera (Rhizoctonia and Arthrobotrys). Our work revealed new insights and raises emerging questions for further studies on the impact of microplastics on the agroecosystems.


Subject(s)
Ascomycota , Microbiota , Agriculture , Plastics , Rhizosphere , Soil/chemistry , Soil Microbiology
9.
Biology (Basel) ; 11(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35053093

ABSTRACT

Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded RNA genomes replicating exclusively in host mitochondria. We previously reported the biological characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein-protein interaction and co-expression network models, we provided a system perspective of how CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they play a role in stress response and redox homeostasis. These proteins could be related to the higher tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative link could not be established by our experimental approach at this stage, the results suggest a new mechanistic hypothesis that demands further in-depth functional studies.

10.
J Exp Bot ; 73(6): 1809-1824, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34864996

ABSTRACT

Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.


Subject(s)
Iron , Soil , Germination , Iron/metabolism , Plants/metabolism , Rhizosphere , Seeds/metabolism
11.
Plant Physiol Biochem ; 168: 27-42, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34619596

ABSTRACT

The investigation of the adaptive strategies of wild plant species to extreme environments is a challenging issue, which favors the identification of new traits for plant resilience. We investigated different traits which characterize the root-soil interaction of Parietaria judaica, a wild plant species commonly known as "Pellitory-of-the-wall". P. judaica adopts the acidification-reduction strategy (Strategy I) for iron (Fe) acquisition from soil, and it can complete its life cycle in highly calcareous environments without any symptoms of chlorosis. In a field-to-lab approach, the microbiome associated with P. judaica roots was analyzed in spontaneous plants harvested from an urban environment consisting in an extremely calcareous habitat. Also, the phenolics and carboxylates content and root plasticity and exudation were analyzed in P. judaica plants grown under three different controlled conditions mimicking the effect of calcareous environments on Fe availability: results show that P. judaica differentially modulates root plasticity under different Fe availability-impaired conditions, and that it induces, to a high extent, the exudation of caffeoylquinic acid derivatives under calcareous conditions, positively impacting Fe solubility.


Subject(s)
Microbiota , Parietaria , Iron , Phenols , Plant Roots , Soil
12.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576328

ABSTRACT

The geomagnetic field (GMF) is an environmental factor affecting the mineral nutrient uptake of plants and a contributing factor for efficient iron (Fe) uptake in Arabidopsis seedlings. Understanding the mechanisms underlining the impact of the environment on nutrient homeostasis in plants requires disentangling the complex interactions occurring among nutrients. In this study we investigated the effect of GMF on the interplay between iron (Fe) and sulfur (S) by exposing Arabidopsis thaliana plants grown under single or combined Fe and S deficiency, to near-null magnetic field (NNMF) conditions. Mineral analysis was performed by ICP-MS and capillary electrophoresis, whereas the expression of several genes involved in Fe and S metabolism and transport was assayed by qRT-PCR. The results show that NNMF differentially affects (i) the expression of some Fe- and S-responsive genes and (ii) the concentration of metals in plants, when compared with GMF. In particular, we observed that Cu content alteration in plant roots depends on the simultaneous variation of nutrient availability (Fe and S) and MF intensity (GMF and NNMF). Under S deficiency, NNMF-exposed plants displayed variations of Cu uptake, as revealed by the expression of the SPL7 and miR408 genes, indicating that S availability is an important factor in maintaining Cu homeostasis under different MF intensities. Overall, our work suggests that the alteration of metal homeostasis induced by Fe and/or S deficiency in reduced GMF conditions impacts the ability of plants to grow and develop.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Iron/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Sulfur
13.
Front Plant Sci ; 12: 670308, 2021.
Article in English | MEDLINE | ID: mdl-34354720

ABSTRACT

It is well known that S interacts with some macronutrients, such as N, P, and K, as well as with some micronutrients, such as Fe, Mo, Cu, Zn, and B. From our current understanding, such interactions could be related to the fact that: (i) S shares similar chemical properties with other elements (e.g., Mo and Se) determining competition for the acquisition/transport process (SULTR transporter family proteins); (ii) S-requiring metabolic processes need the presence of other nutrients or regulate plant responses to other nutritional deficiencies (S-containing metabolites are the precursor for the synthesis of ethylene and phytosiderophores); (iii) S directly interacts with other elements (e.g., Fe) by forming complexes and chemical bonds, such as Fe-S clusters; and (iv) S is a constituent of organic molecules, which play crucial roles in plants (glutathione, transporters, etc.). This review summarizes the current state of knowledge of the interplay between Fe and S in plants. It has been demonstrated that plant capability to take up and accumulate Fe strongly depends on S availability in the growth medium in both monocots and dicot plants. Moreover, providing S above the average nutritional need enhances the Fe content in wheat grains, this beneficial effect being particularly pronounced under severe Fe limitation. On the other hand, Fe shortage induces a significant increase in the demand for S, resulting in enhanced S uptake and assimilation rate, similar to what happens under S deficiency. The critical evaluation of the recent studies on the modulation of Fe/S interaction by integrating old and new insights gained on this topic will help to identify the main knowledge gaps. Indeed, it remains a challenge to determine how the interplay between S and Fe is regulated and how plants are able to sense environmental nutrient fluctuations and then to adapt their uptake, translocation, assimilation, and signaling. A better knowledge of the mechanisms of Fe/S interaction might considerably help in improving crop performance within a context of limited nutrient resources and a more sustainable agriculture.

14.
Plants (Basel) ; 10(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33923918

ABSTRACT

Two rice accessions, Capataz and Beirao, contrasting for cadmium (Cd) tolerance and root retention, were exposed to a broad range of Cd concentrations (0.01, 0.1, and 1 µM) and analyzed for their potential capacity to chelate, compartmentalize, and translocate Cd to gain information about the relative contribution of these processes in determining the different pathways of Cd distribution along the plants. In Capataz, Cd root retention increased with the external Cd concentration, while in Beirao it resulted independent of Cd availability and significantly higher than in Capataz at the lowest Cd concentrations analyzed. Analysis of thiol accumulation in the roots revealed that the different amounts of these compounds in Capataz and Beirao, as well as the expression levels of genes involved in phytochelatin biosynthesis and direct Cd sequestration into the vacuoles of the root cells, were not related to the capacity of the accessions to trap the metal into the roots. Interestingly, the relative transcript abundance of OsHMA2, a gene controlling root-to-shoot Cd/Zn translocation, was not influenced by Cd exposure in Capataz and progressively increased in Beirao with the external Cd concentration, suggesting that activity of the OsHMA2 transporter may differentially limit root-to-shoot Cd/Zn translocation in Capataz and Beirao.

15.
Front Plant Sci ; 12: 629013, 2021.
Article in English | MEDLINE | ID: mdl-33679842

ABSTRACT

Network analysis is a systems biology-oriented approach based on graph theory that has been recently adopted in various fields of life sciences. Starting from mitochondrial proteomes purified from roots of Cucumis sativus plants grown under single or combined iron (Fe) and molybdenum (Mo) starvation, we reconstructed and analyzed at the topological level the protein-protein interaction (PPI) and co-expression networks. Besides formate dehydrogenase (FDH), already known to be involved in Fe and Mo nutrition, other potential mitochondrial hubs of Fe and Mo homeostasis could be identified, such as the voltage-dependent anion channel VDAC4, the beta-cyanoalanine synthase/cysteine synthase CYSC1, the aldehyde dehydrogenase ALDH2B7, and the fumaryl acetoacetate hydrolase. Network topological analysis, applied to plant proteomes profiled in different single or combined nutritional conditions, can therefore assist in identifying novel players involved in multiple homeostatic interactions.

16.
Plants (Basel) ; 9(12)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302398

ABSTRACT

The Geomagnetic field (GMF) is a typical component of our planet. Plant perception of the GMF implies that any magnetic field (MF) variation would induce possible metabolic changes. In this work was we assessed the role of the GMF on Arabidopsis thaliana Col0 mineral nutrition and lipid metabolism during plant development. We reduced the local GMF (about 40 µT) to Near Null Magnetic Field (NNMF, about 30 nT) to evaluate the effects of GMF on Arabidopsis in a time-course (from rosette to seed-set) experiment by studying the lipid content (fatty acids, FA; and surface alkanes, SA) and mineral nutrients. The expression of selected genes involved in lipid metabolism was assessed by Real-Time PCR (qPCR). A progressive increase of SA with carbon numbers between 21 and 28 was found in plants exposed to NNMF from bolting to flowering developmental stages, whereas the content of some FA significantly (p < 0.05) increased in rosette, bolting and seed-set developmental stages. Variations in SA composition were correlated to the differential expression of several Arabidopsis 3-ketoacyl-CoAsynthase (KCS) genes, including KCS1, KCS5, KCS6, KCS8, and KCS12, a lipid transfer protein (LTPG1) and a lipase (LIP1). Ionomic analysis showed a significant variation in some micronutrients (Fe, Co, Mn and Ni) and macronutrients (Mg, K and Ca) during plant development of plants exposed to NNMF. The results of this work show that A. thaliana responds to variations of the GMF which are perceived as is typical of abiotic stress responses.

17.
Plant Physiol Biochem ; 154: 142-150, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559518

ABSTRACT

Low Fe availability affects plant production mainly by impairing the photosynthetic pathway, since Fe plays an essential role in chlorophyll synthesis as well as in the photosynthetic electron transport chain. Under these conditions, plant cells require the activation of protective mechanisms to prevent photo-inhibition. Among these mechanisms, photorespiration (PR) has been relatively little investigated in Fe-deficient plants. The aim of this work was to investigate the effect of Fe deficiency on photorespiration by performing in vivo analysis in leaves as well as biochemical characterization of some PR-related enzyme activities in a peroxisome-purified fraction from cucumber leaves. Modelling of light response curves at both 21 and 2% pO2 revealed a slowing down of PR under Fe deficiency. The activity of some PR-involving enzymes as well as the contents of glycine and serine were affected under Fe deficiency. Furthermore, nitrate reductase, the glutamine synthetase-glutamate synthase (GS-GOGAT) cycle and hydroxypyruvate dehydrogenase isoform activities were differentially altered under Fe deficiency. The dataset indicates that, in Fe-deficient cucumber leaves, the modulation of PR involves the induction of some PR-related pathways, such as the photorespiratory N recycling and cytosolic photorespiratory bypass processes.


Subject(s)
Cucumis sativus , Iron Deficiencies , Nitrogen/metabolism , Photosynthesis , Cucumis sativus/metabolism , Glutamate-Ammonia Ligase/metabolism , Nitrate Reductase , Plant Leaves/metabolism
18.
Plant Direct ; 4(5): e00229, 2020 May.
Article in English | MEDLINE | ID: mdl-32490348

ABSTRACT

WHIRLY2 is a single-stranded DNA binding protein associated with mitochondrial nucleoids. In the why 2-1 mutant of Arabidopsis thaliana, a major proportion of leaf mitochondria has an aberrant structure characterized by disorganized nucleoids, reduced abundance of cristae, and a low matrix density despite the fact that the macroscopic phenotype during vegetative growth is not different from wild type. These features coincide with an impairment of the functionality and dynamics of mitochondria that have been characterized in detail in wild-type and why 2-1 mutant cell cultures. In contrast to the development of the vegetative parts, seed germination is compromised in the why 2-1 mutant. In line with that, the expression level of why 2 in seeds of wild-type plants is higher than that of why 3, whereas in adult plant no difference is found. Intriguingly, in early stages of shoots development of the why 2-1 mutant, although not in seeds, the expression level of why 3 is enhanced. These results suggest that WHIRLY3 is a potential candidate to compensate for the lack of WHIRLY2 in the why 2-1 mutant. Such compensation is possible only if the two proteins are localized in the same organelle. Indeed, in organello protein transport experiments using intact mitochondria and chloroplasts revealed that WHIRLY3 can be dually targeted into both, chloroplasts and mitochondria. Together, these data indicate that the alterations of mitochondria nucleoids are tightly linked to alterations of mitochondria morphology and functionality. This is even more evident in those phases of plant life when mitochondrial activity is particularly high, such as seed germination. Moreover, our results indicate that the differential expression of why 2 and why 3 predetermines the functional replacement of WHIRLY2 by WHIRLY3, which is restricted though to the vegetative parts of the plant.

19.
Front Plant Sci ; 11: 325, 2020.
Article in English | MEDLINE | ID: mdl-32373135

ABSTRACT

The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.

20.
Plant Cell Environ ; 42(10): 2885-2901, 2019 10.
Article in English | MEDLINE | ID: mdl-31286524

ABSTRACT

Increasing crop yields by using ecofriendly practices is of high priority to tackle problems regarding food security and malnutrition worldwide. A sustainable crop production requires a limited use of fertilizer and the employment of plant varieties with improved ability to acquire nutrients from soil. To reach these goals, the scientific community aims to understand plant nutrients homeostasis by deciphering the nutrient sensing and signalling mechanisms of plants. Several lines of evidence about the involvement of Ca2+ as the signal of an impaired nutrient availability have been reported. Ca2+ signalling is a tightly regulated process that requires specific protein toolkits to perceive external stimuli and to induce the specific responses in the plant needed to survive. Here, we summarize both older and recent findings concerning the involvement of Ca2+ signalling in the homeostasis of nutrients. In this review, we present new emerging technologies, based on the use of genetically encoded Ca2+ sensors and advanced microscopy, which offer the chance to perform in planta analyses of Ca2+ dynamics at cellular resolution. The harnessing of these technologies with different genetic backgrounds and subjected to different nutritional stresses will provide important insights to the still little-known mechanisms of nutrient sensing in plants.


Subject(s)
Calcium/metabolism , Homeostasis , Image Processing, Computer-Assisted/methods , Nutrients/analysis , Plants/chemistry , Signal Transduction , Biosensing Techniques/methods , Fertilizers , Soil
SELECTION OF CITATIONS
SEARCH DETAIL