Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Elife ; 82019 01 23.
Article in English | MEDLINE | ID: mdl-30672466

ABSTRACT

The PLZF transcription factor is essential for osteogenic differentiation of hMSCs; however, its regulation and molecular function during this process is not fully understood. Here, we revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in naive hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF. Subsequently, PLZF was recruited to osteogenic enhancers, influencing H3K27 acetylation and expression of nearby genes important for osteogenic function. Furthermore, we identified a latent enhancer within the ZBTB16/PLZF locus itself that became active, gained PLZF, p300 and Mediator binding and looped to the promoter of the nicotinamide N-methyltransferase (NNMT) gene. The increased expression of NNMT correlated with a decline in SAM levels, which is dependent on PLZF and is required for osteogenic differentiation.


Subject(s)
Cell Differentiation/genetics , Embryonic Development/genetics , Enhancer Elements, Genetic/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Acetylation , Cell Lineage/genetics , Chromatin/metabolism , Epigenesis, Genetic , Genetic Loci , Histones/metabolism , Humans , Lysine/metabolism , Nicotinamide N-Methyltransferase/genetics , Nicotinamide N-Methyltransferase/metabolism , Promoter Regions, Genetic , Promyelocytic Leukemia Zinc Finger Protein/genetics , Protein Binding , RNA/genetics , Transcriptome/genetics
2.
PLoS Genet ; 13(2): e1006632, 2017 02.
Article in English | MEDLINE | ID: mdl-28207814

ABSTRACT

The eukaryotic genome is organized in a three-dimensional structure called chromatin, constituted by DNA and associated proteins, the majority of which are histones. Post-translational modifications of histone proteins greatly influence chromatin structure and regulate many DNA-based biological processes. Methylation of lysine 36 of histone 3 (H3K36) is a post-translational modification functionally relevant during early steps of DNA damage repair. Here, we show that the JMJD-5 regulates H3K36 di-methylation and it is required at late stages of double strand break repair mediated by homologous recombination. Loss of jmjd-5 results in hypersensitivity to ionizing radiation and in meiotic defects, and it is associated with aberrant retention of RAD-51 at sites of double strand breaks. Analyses of jmjd-5 genetic interactions with genes required for resolving recombination intermediates (rtel-1) or promoting the resolution of RAD-51 double stranded DNA filaments (rfs-1 and helq-1) suggest that jmjd-5 prevents the formation of stalled postsynaptic recombination intermediates and favors RAD-51 removal. As these phenotypes are all recapitulated by a catalytically inactive jmjd-5 mutant, we propose a novel role for H3K36me2 regulation during late steps of homologous recombination critical to preserve genome integrity.


Subject(s)
Caenorhabditis elegans Proteins/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Rad51 Recombinase/genetics , Animals , Apoptosis/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Chromatin/genetics , DNA Damage/genetics , DNA Helicases/metabolism , DNA Methylation/genetics , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Genomic Instability , Germ Cells , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Protein Processing, Post-Translational/genetics , Rad51 Recombinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL