Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 443
Filter
1.
Lancet Glob Health ; 12(7): e1149-e1158, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754459

ABSTRACT

BACKGROUND: Nodding syndrome is a poorly understood neurological disorder that predominantly occurs in Africa. We hypothesised that nodding syndrome is a neuroinflammatory disorder, induced by antibodies to Onchocerca volvulus or its Wolbachia symbiont, cross-reacting with host neuronal proteins (HNPs), and that doxycycline can be used as treatment. METHODS: In this randomised, double-blind, placebo-controlled, phase 2 trial, we recruited participants from districts affected by nodding syndrome in northern Uganda. We included children and adolescents aged 8-18 years with nodding syndrome, as defined by WHO consensus criteria. Participants were randomly assigned (1:1) to receive either 100 mg doxycycline daily or placebo for 6 weeks via a computer-generated schedule stratified by skin microscopy results, and all parties were masked to group assignment. Diagnoses of O volvulus and antibodies to HNPs were made using luciferase immunoprecipitation system assays and immunohistochemistry. The primary outcome was change in the proportion with antibodies to HNPs, assessed at 24 months. All participants were included in safety analyses, and surviving participants (those with samples at 24 months) were included in primary analyses. Secondary outcomes were: change in concentrations of antibodies to HNPs at 24 months compared with baseline; proportion of participants testing positive for antibodies to O volvulus-specific proteins and concentrations of Ov16 or OVOC3261 antibodies at 24 months compared with baseline; change in seizure burden, proportion achieving seizure freedom, and the proportions with interictal epileptiform discharges on the diagnostic EEG; overall quality of life; disease severity at 24 months; and incidence of all-cause adverse events, serious adverse events, and seizure-related mortality by 24 months. This trial is registered with ClinicalTrials.gov, NCT02850913. FINDINGS: Between Sept 1, 2016, and Aug 31, 2018, 329 children and adolescents were screened, of whom 240 were included in the study. 140 (58%) participants were boys and 100 (42%) were girls. 120 (50%) participants were allocated to receive doxycycline and 120 (50%) to receive placebo. At recruitment, the median duration of symptoms was 9 years (IQR 6-10); 232 (97%) participants had O volvulus-specific antibodies and 157 (65%) had autoantibodies to HNPs. The most common plasma autoantibodies were to human protein deglycase DJ-1 (85 [35%] participants) and leiomodin-1 (77 [32%] participants) and, in cerebrospinal fluid (CSF), to human DJ-1 (27 [11%] participants) and leiomodin-1 (14 [6%] participants). On immunohistochemistry, 46 (19%) participants had CSF autoantibodies to HNPs, including leiomodin-1 (26 [11%]), γ-aminobutyric acid B receptors (two [<1%]), CASPR2 (one [<1%]), or unknown targets (28 [12%]). At 24 months, 161 (72%) of 225 participants had antibodies to HNPs compared with 157 (65%) of 240 at baseline. 6 weeks of doxycycline did not affect the concentration of autoantibodies to HNPs, seizure control, disease severity, or quality of life at the 24-month follow-up but substantially decreased Ov16 antibody concentrations; the median plasma signal-to-noise Ov16 ratio was 16·4 (95% CI 6·4-38·4), compared with 27·9 (8·2-65·8; p=0·033) for placebo. 14 (6%) participants died and, other than one traffic death, all deaths were seizure-related. Acute seizure-related hospitalisations (rate ratio [RR] 0·43 [95% CI 0·20-0·94], p=0·028) and deaths (RR 0·46 [0·24-0·89], p=0·028) were significantly lower in the doxycycline group. At 24 months, 96 (84%) of 114 participants who received doxycycline tested positive for antibodies to Ov16, compared with 97 (87%) of 111 on placebo (p=0·50), and 74 (65%) participants on doxycycline tested positive for antibodies to OVOC3261, compared with 57 (51%) on placebo (p=0·039). Doxycycline was safe; there was no difference in the incidence of grade 3-5 adverse events across the two groups. INTERPRETATION: Nodding syndrome is strongly associated with O volvulus and the pathogenesis is probably mediated through an O volvulus induced autoantibody response to multiple proteins. Although it did not reverse disease symptoms, doxycycline or another prophylactic antibiotic could be considered as adjunct therapy to antiseizure medication, as it might reduce fatal complications from acute seizures and status epilepticus induced by febrile infections. FUNDING: Medical Research Council (UK). TRANSLATION: For the Luo translation of the abstract see Supplementary Materials section.


Subject(s)
Doxycycline , Nodding Syndrome , Humans , Child , Adolescent , Female , Male , Doxycycline/therapeutic use , Nodding Syndrome/drug therapy , Double-Blind Method , Uganda , Treatment Outcome , Anti-Bacterial Agents/therapeutic use , Onchocerca volvulus/drug effects
3.
Nat Commun ; 14(1): 8487, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135686

ABSTRACT

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.


Subject(s)
Brain Injuries , COVID-19 , Humans , Follow-Up Studies , Cytokines , COVID-19/complications , COVID-19 Serotherapy , Autoantibodies , Inflammation Mediators , Biomarkers , Glial Fibrillary Acidic Protein
4.
BMJ Open ; 13(11): e072134, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945292

ABSTRACT

OBJECTIVE: To investigate whether intravenous immunoglobulin (IVIG) improves neurological outcomes in children with encephalitis when administered early in the illness. DESIGN: Phase 3b multicentre, double-blind, randomised placebo-controlled trial. SETTING: Twenty-one hospitals in the UK. PARTICIPANTS: Children aged 6 months to 16 years with a diagnosis of acute or subacute encephalitis, with a planned sample size of 308. INTERVENTION: Two doses (1 g/kg/dose) of either IVIG or matching placebo given 24-36 hours apart, in addition to standard treatment. MAIN OUTCOME MEASURE: The primary outcome was a 'good recovery' at 12 months after randomisation, defined as a score of≤2 on the Paediatric Glasgow Outcome Score Extended. SECONDARY OUTCOME MEASURES: The secondary outcomes were clinical, neurological, neuroimaging and neuropsychological results, identification of the proportion of children with immune-mediated encephalitis, and IVIG safety data. RESULTS: 18 participants were recruited from 12 hospitals and randomised to receive either IVIG (n=10) or placebo (n=8) between 23 December 2015 and 26 September 2017. The study was terminated early following withdrawal of funding due to slower than anticipated recruitment, and therefore did not reach the predetermined sample size required to achieve the primary study objective; thus, the results are descriptive. At 12 months after randomisation, 9 of the 18 participants (IVIG n=5/10 (50%), placebo n=4/8 (50%)) made a good recovery and 5 participants (IVIG n=3/10 (30%), placebo n=2/8 (25%)) made a poor recovery. Three participants (IVIG n=1/10 (10%), placebo n=2/8 (25%)) had a new diagnosis of epilepsy during the study period. Two participants were found to have specific autoantibodies associated with autoimmune encephalitis. No serious adverse events were reported in participants receiving IVIG. CONCLUSIONS: The IgNiTE (ImmunoglobuliN in the Treatment of Encephalitis) study findings support existing evidence of poor neurological outcomes in children with encephalitis. However, the study was halted prematurely and was therefore underpowered to evaluate the effect of early IVIG treatment compared with placebo in childhood encephalitis. TRIAL REGISTRATION NUMBER: Clinical Trials.gov NCT02308982; ICRCTN registry ISRCTN15791925.


Subject(s)
Encephalitis , Hashimoto Disease , Adolescent , Child , Child, Preschool , Humans , Infant , Administration, Intravenous , Double-Blind Method , Encephalitis/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Treatment Outcome
6.
Article in English | MEDLINE | ID: mdl-37582613

ABSTRACT

BACKGROUND AND OBJECTIVES: Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS: C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and ßAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS: IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in ßAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION: MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.


Subject(s)
Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Humans , Agrin/pharmacology , Immunoglobulin G , Muscle Proteins/metabolism , Myasthenia Gravis/drug therapy , Phosphorylation , Receptors, Cholinergic
7.
PLoS One ; 18(8): e0282645, 2023.
Article in English | MEDLINE | ID: mdl-37611003

ABSTRACT

OBJECTIVES: Encephalitis, brain inflammation and swelling, most often caused by an infection or the body's immune defences, can have devastating consequences, especially if diagnosed late. We looked for clinical predictors of different types of encephalitis to help clinicians consider earlier treatment. METHODS: We conducted a multicentre prospective observational cohort study (ENCEPH-UK) of adults (> 16 years) with suspected encephalitis at 31 UK hospitals. We evaluated clinical features and investigated for infectious and autoimmune causes. RESULTS: 341 patients were enrolled between December 2012 and December 2015 and followed up for 12 months. 233 had encephalitis, of whom 65 (28%) had HSV, 38 (16%) had confirmed or probable autoimmune encephalitis, and 87 (37%) had no cause found. The median time from admission to 1st dose of aciclovir for those with HSV was 14 hours (IQR 5-50); time to 1st dose of immunosuppressant for the autoimmune group was 125 hours (IQR 45-250). Compared to non-HSV encephalitis, patients with HSV more often had fever, lower serum sodium and lacked a rash. Those with probable or confirmed autoimmune encephalitis were more likely to be female, have abnormal movements, normal serum sodium levels and a cerebrospinal fluid white cell count < 20 cells x106/L, but they were less likely to have a febrile illness. CONCLUSIONS: Initiation of treatment for autoimmune encephalitis is delayed considerably compared with HSV encephalitis. Clinical features can help identify patients with autoimmune disease and could be used to initiate earlier presumptive therapy.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Humans , Adult , Female , Male , Prospective Studies , Encephalitis/diagnosis , Encephalitis/epidemiology , Sodium , United Kingdom/epidemiology
8.
Brain ; 146(10): 4233-4246, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37186601

ABSTRACT

In utero exposure to maternal antibodies targeting the fetal acetylcholine receptor isoform (fAChR) can impair fetal movement, leading to arthrogryposis multiplex congenita (AMC). Fetal AChR antibodies have also been implicated in apparently rare, milder myopathic presentations termed fetal acetylcholine receptor inactivation syndrome (FARIS). The full spectrum associated with fAChR antibodies is still poorly understood. Moreover, since some mothers have no myasthenic symptoms, the condition is likely underreported, resulting in failure to implement effective preventive strategies. Here we report clinical and immunological data from a multicentre cohort (n = 46 cases) associated with maternal fAChR antibodies, including 29 novel and 17 previously reported with novel follow-up data. Remarkably, in 50% of mothers there was no previously established myasthenia gravis (MG) diagnosis. All mothers (n = 30) had AChR antibodies and, when tested, binding to fAChR was often much greater than that to the adult AChR isoform. Offspring death occurred in 11/46 (23.9%) cases, mainly antenatally due to termination of pregnancy prompted by severe AMC (7/46, 15.2%), or during early infancy, mainly from respiratory failure (4/46, 8.7%). Weakness, contractures, bulbar and respiratory involvement were prominent early in life, but improved gradually over time. Facial (25/34; 73.5%) and variable peripheral weakness (14/32; 43.8%), velopharyngeal insufficiency (18/24; 75%) and feeding difficulties (16/36; 44.4%) were the most common sequelae in long-term survivors. Other unexpected features included hearing loss (12/32; 37.5%), diaphragmatic paresis (5/35; 14.3%), CNS involvement (7/40; 17.5%) and pyloric stenosis (3/37; 8.1%). Oral salbutamol used empirically in 16/37 (43.2%) offspring resulted in symptom improvement in 13/16 (81.3%). Combining our series with all previously published cases, we identified 21/85 mothers treated with variable combinations of immunotherapies (corticosteroids/intravenous immunoglobulin/plasmapheresis) during pregnancy either for maternal MG symptom control (12/21 cases) or for fetal protection (9/21 cases). Compared to untreated pregnancies (64/85), maternal treatment resulted in a significant reduction in offspring deaths (P < 0.05) and other complications, with treatment approaches involving intravenous immunoglobulin/ plasmapheresis administered early in pregnancy most effective. We conclude that presentations due to in utero exposure to maternal (fetal) AChR antibodies are more common than currently recognized and may mimic a wide range of neuromuscular disorders. Considering the wide clinical spectrum and likely diversity of underlying mechanisms, we propose 'fetal acetylcholine receptor antibody-related disorders' (FARAD) as the most accurate term for these presentations. FARAD is vitally important to recognize, to institute appropriate management strategies for affected offspring and to improve outcomes in future pregnancies. Oral salbutamol is a symptomatic treatment option in survivors.


Subject(s)
Arthrogryposis , Myasthenia Gravis , Neuromuscular Diseases , Pregnancy , Female , Adult , Humans , Immunoglobulins, Intravenous , Receptors, Cholinergic , Myasthenia Gravis/therapy , Myasthenia Gravis/complications , Autoantibodies , Arthrogryposis/complications
9.
Cell Rep ; 42(2): 112039, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36749664

ABSTRACT

The central circadian regulator within the suprachiasmatic nucleus transmits time of day information by a diurnal spiking rhythm driven by molecular clock genes controlling membrane excitability. Most brain regions, including the hippocampus, harbor similar intrinsic circadian transcriptional machinery, but whether these molecular programs generate oscillations of membrane properties is unclear. Here, we show that intrinsic excitability of mouse dentate granule neurons exhibits a 24-h oscillation that controls spiking probability. Diurnal changes in excitability are mediated by antiphase G-protein regulation of potassium and sodium currents that reduce excitability during the Light phase. Disruption of the circadian transcriptional machinery by conditional deletion of Bmal1 enhances excitability selectively during the Light phase by removing G-protein regulation. These results reveal that circadian transcriptional machinery regulates intrinsic excitability by coordinated regulation of ion channels by G-protein signaling, highlighting a potential novel mechanism of cell-autonomous oscillations.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice , Animals , Circadian Rhythm/physiology , Neurons/physiology , Suprachiasmatic Nucleus/physiology , GTP-Binding Proteins , Dentate Gyrus , Circadian Clocks/physiology
10.
Article in English | MEDLINE | ID: mdl-36543539

ABSTRACT

BACKGROUND AND OBJECTIVE: Nodding syndrome (NS) is a unique childhood-onset epileptic disorder that occurs predominantly in several regions of sub-Saharan Africa. The disease has been associated with Onchocerca volvulus (Ov)-induced immune responses and possible cross-reactivity with host proteins. The aim of this study was to compare structural changes in the brain on MRI between NS and other forms of onchocerciasis-associated epilepsies (OAEs) and to relate structural changes to the Ov-induced immune responses and level of disability. METHODS: Thirty-nine children with NS and 14 age-matched participants with other forms of OAE from an endemic region in Uganda underwent detailed clinical examination, serologic evaluation (including Ov-associated antibodies to Ov-16 and Hu-leiomodin-1) and quantitative volumetric analysis of brain MRIs (1.5 T scanner) using Neuroreader, a cloud-based software. RESULTS: Cerebral and cerebellar atrophy were the predominant features in both NS and OAE. On quantitative volumetric analysis, participants with NS had larger ventricular volumes compared with participants with OAE, indicative of increased global cortical atrophy (pcorr = 0.036). Among children with NS, severe disability correlated with higher degree of atrophy in the gray matter volume (pcorr = 0.009) and cerebellar volume (pcorr = 0.009). NS cases had lower anti-Ov-16 IgG signal-to-noise ratios than the OAE cases (p < 0.01), but no difference in the levels of the Hu-leiomodin-1 antibodies (p = 0.64). The levels of Ov-associated antibodies did not relate to the degree of cerebral or cerebellar atrophy in either NS or OAE cases. DISCUSSION: This is the first study to show that cerebral and cerebellar atrophy correlated with the severity of NS disability, providing an imaging marker for these endemic epileptic disorders that until now have remained poorly characterized. Both NS and OAE have cerebral and cerebellar atrophy, and the levels of Ov-associated antibodies do not seem to be related to the structural changes on MRI.


Subject(s)
Epilepsy , Nodding Syndrome , Onchocerca volvulus , Onchocerciasis , Child , Animals , Humans , Nodding Syndrome/complications , Nodding Syndrome/epidemiology , Onchocerciasis/complications , Onchocerciasis/epidemiology , Antibodies, Antinuclear
11.
J Neurol Sci ; 443: 120494, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36403297

ABSTRACT

This study aimed to evaluate the diagnostic usefulness of motor end-plate (MEP) analysis along with clustered acetylcholine receptor (AChR) antibody (Ab) assays in patients with myasthenia-like symptoms but negative routine AChR and muscle-specific kinase (MuSK) Ab tests. MEP analysis of muscle biopsies of the biceps brachii was performed in 20 patients to try to differentiate between those with or without immune-mediated myasthenia gravis (MG). Using a quantitative method, complement C3 deposition and AChR densities in MEPs were examined. Independently, cell-based assays were used to detect serum clustered-AChR Abs. Only five of 20 patients had complement deposition at MEPs; four of these patients had reduced AChR densities similar to those in patients with typical AChR Ab positive MG, and distinct from those in the remaining 15 patients. Two of the four serum samples from these patients had clustered-AChR Abs. All complement-positive patients were considered as having immune-mediated MG and improved with appropriate treatments; although one patient presented with MG 3 years later, the remaining patients had other diagnoses during over 10 years of follow-up. These results suggest the usefulness of MEP analysis of muscle biopsies in diagnosing immune-mediated MG in seronegative patients with myasthenia-like symptoms but, due to the invasiveness of the muscle biopsy procedure, clustered AChR Abs should, if possible, be tested first.


Subject(s)
Motor Endplate , Myasthenia Gravis , Humans , Myasthenia Gravis/diagnosis , Autoantibodies , Biopsy , Research Design
12.
BMJ Neurol Open ; 4(2): e000323, 2022.
Article in English | MEDLINE | ID: mdl-36110928

ABSTRACT

Objective: In patients with encephalitis, the development of acute symptomatic seizures is highly variable, but when present is associated with a worse outcome. We aimed to determine the factors associated with seizures in encephalitis and develop a clinical prediction model. Methods: We analysed 203 patients from 24 English hospitals (2005-2008) (Cohort 1). Outcome measures were seizures prior to and during admission, inpatient seizures and status epilepticus. A binary logistic regression risk model was converted to a clinical score and independently validated on an additional 233 patients from 31 UK hospitals (2013-2016) (Cohort 2). Results: In Cohort 1, 121 (60%) patients had a seizure including 103 (51%) with inpatient seizures. Admission Glasgow Coma Scale (GCS) ≤8/15 was predictive of subsequent inpatient seizures (OR (95% CI) 5.55 (2.10 to 14.64), p<0.001), including in those without a history of prior seizures at presentation (OR 6.57 (95% CI 1.37 to 31.5), p=0.025).A clinical model of overall seizure risk identified admission GCS along with aetiology (autoantibody-associated OR 11.99 (95% CI 2.09 to 68.86) and Herpes simplex virus 3.58 (95% CI 1.06 to 12.12)) (area under receiver operating characteristics curve (AUROC) =0.75 (95% CI 0.701 to 0.848), p<0.001). The same model was externally validated in Cohort 2 (AUROC=0.744 (95% CI 0.677 to 0.811), p<0.001). A clinical scoring system for stratifying inpatient seizure risk by decile demonstrated good discrimination using variables available on admission; age, GCS and fever (AUROC=0.716 (95% CI 0.634 to 0.798), p<0.001) and once probable aetiology established (AUROC=0.761 (95% CI 0.6840.839), p<0.001). Conclusion: Age, GCS, fever and aetiology can effectively stratify acute seizure risk in patients with encephalitis. These findings can support the development of targeted interventions and aid clinical trial design for antiseizure medication prophylaxis.

13.
Ann Indian Acad Neurol ; 25(3): 473-478, 2022.
Article in English | MEDLINE | ID: mdl-35936609

ABSTRACT

Background: Prevalence of antibody-mediated autoimmune encephalitis (AE) is reported to be comparable to infectious encephalitis in Western populations. We evaluated the frequency and significance of AE and neuronal autoantibodies in comparison to infectious etiologies among patients presenting with encephalitis in a South Asian population. Methods: Ninety-nine consecutive patients with a clinical diagnosis of encephalitis/meningoencephalitis admitted to two of the largest tertiary-care hospitals in Sri Lanka were studied. PCR and ELISA were used to screen viruses while Gram stain and culture were used to screen bacteria. Sera were tested for antibodies binding to primary embryonic rat hippocampal neuronal cultures and cell-based assays for antibodies to NMDAR, LGI1, CASPR2, Contactin2, AMPAR, GABAAR, GABABR, aquaporin-4 and MOG. Results: Patient ages ranged from 1 month to 73 years (mean = 24.91; SD = 21.33) with a male: female ratio of 1.75:1. A viral etiology was identified in 27.3% and bacterial meningoencephalitis was diagnosed in 17.1%. Sera of nine patients had antibodies binding to live primary neurons, but only five had specific antibodies to CASPR2 (n = 1), NMDAR (n = 2) or GABABR-antibodies (n = 2). Moreover, the patients with CASPR2 antibodies and NMDAR-antibodies were also positive for dengue antibodies. Only the two patients with NMDAR-antibodies had features and responses to immunotherapy consistent with AE. Conclusions: Identified infectious forms of meningoencephalitis (44.4%) greatly exceeded the occurrence of neuronal autoantibodies (9.1%) and AE (2%) in Sri Lanka, and this may be common in those regions where infections are prevalent.

14.
J Neurol Neurosurg Psychiatry ; 93(9): 995-1000, 2022 09.
Article in English | MEDLINE | ID: mdl-35835469

ABSTRACT

OBJECTIVE: Patients with myasthenia gravis without acetylcholine receptor (AChR) or muscle-specific kinase (MuSK) antibodies detected by radioimmunoprecipitation assays (RIAs) are classified as seronegative myasthenia gravis (SNMG). Live cell-based assays (l-CBAs) can detect additional antibodies to clustered AChR, MuSK and low-density lipoprotein receptor-related protein 4 (LRP4), but positivity rates are variable and both clinical relevance and utility of CBA platforms remain unclear. METHODS: Sera from 82 patients with SNMG were tested by l-CBAs. Human embryonic kidney cells were transfected to individually express clustered AChR, MuSK or LRP4; or transfected to jointly express both clustered adult AChR and MuSK. Sera from 30 and 20 patients positive by RIA for AChR or MuSK antibodies were used as comparators. RESULTS: 53 of 82 (72%) patients with SNMG had generalised and 29 (28%) had ocular disease. The clustered AChR CBA detected antibodies in 16 of 82 patients (19.5%; including 4 patients with solely fetal AChR antibodies), while 7 of 82 (8.5%) patients had MuSK antibodies. A novel exploratory combined adult AChR-MuSK l-CBA efficiently detected all these antibodies in a subset of the SNMG cohort. No LRP4 antibodies were identified. Overall, patients with SNMG with clustered AChR antibodies, CBA-positive MuSK-MG or triple seronegative were younger, had less severe disease than patients with RIA-positive MG and had a better clinical outcome when immunotherapy was started soon after disease onset, although the time interval from onset to immunotherapy was not different when compared with patients with RIA-positive MG. CONCLUSION: Around one-third of patients with SNMG had AChR or MuSK antibodies by l-CBAs, which were efficiently detected with a combined l-CBA. The results in this large and unselected cohort of patients with MG demonstrate the diagnostic usefulness of performing CBAs and the importance of making these tests more widely available.


Subject(s)
Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Adult , Autoantibodies , Cohort Studies , Humans , Myasthenia Gravis/diagnosis , Receptors, Cholinergic
15.
J Neuromuscul Dis ; 9(4): 525-532, 2022.
Article in English | MEDLINE | ID: mdl-35466948

ABSTRACT

BACKGROUND: The slow channel syndrome is a rare hereditary disorder caused by a dominant gain-of-function variant in one of the subunits of the acetylcholine receptor at the neuromuscular junction. Patients typically experience axial, limb and particularly extensor finger muscle weakness. OBJECTIVE: Age at diagnosis is variable and although the long-term prognosis is important for newly diagnosed patients, extensive follow-up studies are rare. We aim to provide answers and perspective for this patient group by presenting an elaborate description of the lifetime follow-up of two slow channel syndrome patients. METHODS: We describe 40 years follow-up in two, genetically confirmed cases (CHRNA1; c.866G > T p.(Ser289Ile)(legacy Ser269Ile) and CHRNE; c.721C > T p.(Leu241Phe)(legacy Leu221Phe) variants). RESULTS: We find that the disease course has a fluctuating pattern and is only mildly progressive. However, hormonal imbalances, (psychological) stress or excessive hot or cold environments are often aggravating factors. Quinidine and fluoxetine are helpful, but ephedrine and salbutamol may also improve symptoms. CONCLUSION: Slow channel syndrome is mildly progressive with a fluctuating pattern. The observations reported here provide a lifespan perspective and answers to the most pressing questions about prognosis and treatment options for newly diagnosed patients.


Subject(s)
Myasthenic Syndromes, Congenital , Follow-Up Studies , Humans , Myasthenic Syndromes, Congenital/genetics , Neuromuscular Junction , Prognosis , Receptors, Cholinergic
16.
Front Immunol ; 13: 833548, 2022.
Article in English | MEDLINE | ID: mdl-35356001

ABSTRACT

The direct impact and sequelae of infections in children and adults result in significant morbidity and mortality especially when they involve the central (CNS) or peripheral nervous system (PNS). The historical understanding of the pathophysiology has been mostly focused on the direct impact of the various pathogens through neural tissue invasion. However, with the better understanding of neuroimmunology, there is a rapidly growing realization of the contribution of the innate and adaptive host immune responses in the pathogenesis of many CNS and PNS diseases. The balance between the protective and pathologic sequelae of immunity is fragile and can easily be tipped towards harm for the host. The matter of immune privilege and surveillance of the CNS/PNS compartments and the role of the blood-brain barrier (BBB) and blood nerve barrier (BNB) makes this even more complex. Our understanding of the pathogenesis of many post-infectious manifestations of various microbial agents remains elusive, especially in the diverse African setting. Our exploration and better understanding of the neuroimmunology of some of the infectious diseases that we encounter in the continent will go a long way into helping us to improve their management and therefore lessen the burden. Africa is diverse and uniquely poised because of the mix of the classic, well described, autoimmune disease entities and the specifically "tropical" conditions. This review explores the current understanding of some of the para- and post-infectious autoimmune manifestations of CNS and PNS diseases in the African context. We highlight the clinical presentations, diagnosis and treatment of these neurological disorders and underscore the knowledge gaps and perspectives for future research using disease models of conditions that we see in the continent, some of which are not uniquely African and, where relevant, include discussion of the proposed mechanisms underlying pathogen-induced autoimmunity. This review covers the following conditions as models and highlight those in which a relationship with COVID-19 infection has been reported: a) Acute Necrotizing Encephalopathy; b) Measles-associated encephalopathies; c) Human Immunodeficiency Virus (HIV) neuroimmune disorders, and particularly the difficulties associated with classical post-infectious autoimmune disorders such as the Guillain-Barré syndrome in the context of HIV and other infections. Finally, we describe NMDA-R encephalitis, which can be post-HSV encephalitis, summarise other antibody-mediated CNS diseases and describe myasthenia gravis as the classic antibody-mediated disease but with special features in Africa.


Subject(s)
Brain Diseases , COVID-19 , Central Nervous System Diseases , Communicable Diseases , Encephalitis , Peripheral Nervous System Diseases , Adult , Autoimmunity , Central Nervous System , Child , Humans , Peripheral Nervous System
17.
J Neurol ; 269(6): 2827-2839, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35353232

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the aetiologic agent of the coronavirus disease 2019 (COVID-19), is now rapidly disseminating throughout the world with 147,443,848 cases reported so far. Around 30-80% of cases (depending on COVID-19 severity) are reported to have neurological manifestations including anosmia, stroke, and encephalopathy. In addition, some patients have recognised autoimmune neurological disorders, including both central (limbic and brainstem encephalitis, acute disseminated encephalomyelitis [ADEM], and myelitis) and peripheral diseases (Guillain-Barré and Miller Fisher syndrome). We systematically describe data from 133 reported series on the Neurology and Neuropsychiatry of COVID-19 blog ( https://blogs.bmj.com/jnnp/2020/05/01/the-neurology-and-neuropsychiatry-of-covid-19/ ) providing a comprehensive overview concerning the diagnosis, and treatment of patients with neurological immune-mediated complications of SARS-CoV-2. In most cases the latency to neurological disorder was highly variable and the immunological or other mechanisms involved were unclear. Despite specific neuronal or ganglioside antibodies only being identified in 10, many had apparent responses to immunotherapies. Although the proportion of patients experiencing immune-mediated neurological disorders is small, the total number is likely to be underestimated. The early recognition and improvement seen with use of immunomodulatory treatment, even in those without identified autoantibodies, makes delayed or missed diagnoses risk the potential for long-term disability, including the emerging challenge of post-acute COVID-19 sequelae (PACS). Finally, potential issues regarding the use of immunotherapies in patients with pre-existent neuro-immunological disorders are also discussed.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Nervous System Diseases , Stroke , COVID-19/complications , Guillain-Barre Syndrome/etiology , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Nervous System Diseases/therapy , SARS-CoV-2 , Stroke/complications
19.
Commun Biol ; 4(1): 1106, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545200

ABSTRACT

Seizures are a prominent feature in N-Methyl-D-Aspartate receptor antibody (NMDAR antibody) encephalitis, a distinct neuro-immunological disorder in which specific human autoantibodies bind and crosslink the surface of NMDAR proteins thereby causing internalization and a state of NMDAR hypofunction. To further understand ictogenesis in this disorder, and to test a potential treatment compound, we developed an NMDAR antibody mediated rat seizure model that displays spontaneous epileptiform activity in vivo and in vitro. Using a combination of electrophysiological and dynamic causal modelling techniques we show that, contrary to expectation, reduction of synaptic excitatory, but not inhibitory, neurotransmission underlies the ictal events through alterations in the dynamical behaviour of microcircuits in brain tissue. Moreover, in vitro application of a neurosteroid, pregnenolone sulphate, that upregulates NMDARs, reduced established ictal activity. This proof-of-concept study highlights the complexity of circuit disturbances that may lead to seizures and the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.


Subject(s)
Autoantibodies/adverse effects , Synaptic Transmission , Animals , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/chemically induced , Disease Models, Animal , Male , Rats , Rats, Wistar
20.
Biochim Biophys Acta Biomembr ; 1863(12): 183772, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34509490

ABSTRACT

NMOSD is a rare but severe relapsing remitting demyelinating disease that affects both adults and children. Most patients have pathogenic antibodies that target the central nervous system AQP4 protein. This review provides an update on our current understanding of the disease pathophysiology and describes the clinical, paraclinical features and therapeutic management of the disease.


Subject(s)
Antibodies/immunology , Aquaporin 4/genetics , Immunoglobulin G/genetics , Neuromyelitis Optica/genetics , Antibodies/genetics , Aquaporin 4/immunology , Central Nervous System/immunology , Central Nervous System/pathology , Humans , Immunoglobulin G/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/pathology , Optic Nerve/immunology , Optic Nerve/pathology , Spinal Cord/immunology , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...