Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 94, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38212966

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is used worldwide and raises concerns because of its prevalence in the environment and potential toxicity. Herein, the capability of Fusarium culmorum to degrade a high concentration (3 g/L) of DEHP as the sole carbon and energy source in solid-state fermentation (SSF) was studied. Cultures grown on glucose were used as controls. The biodegradation of DEHP by F. culmorum reached 96.9% within 312 h. This fungus produced a 3-fold higher esterase activity in DEHP-supplemented cultures than in control cultures (1288.9 and 443.2 U/L, respectively). In DEHP-supplemented cultures, nine bands with esterase activity (24.6, 31.2, 34.2, 39.5, 42.8, 62.1, 74.5, 134.5, and 214.5 kDa) were observed by zymography, which were different from those in control cultures and from those previously reported for cultures grown in submerged fermentation. This is the first study to report the DEHP biodegradation pathway by a microorganism grown in SSF. The study findings uncovered a novel biodegradation strategy by which high concentrations of DEHP could be biodegraded using two alternative pathways simultaneously. F. culmorum has an outstanding capability to efficiently degrade DEHP by inducing esterase production, representing an ecologically promising alternative for the development of environmental biotechnologies, which might help mitigate the negative impacts of environmental contamination by this phthalate. KEY POINTS: • F. culmorum has potential to tolerate and remove di(2-ethylhexyl) phthalate (DEHP) • Solid-state fermentation is an efficient system for DEHP degradation by F. culmorum • High concentrations of DEHP induce high levels of esterase production by F. culmorum.


Subject(s)
Diethylhexyl Phthalate , Fusarium , Phthalic Acids , Diethylhexyl Phthalate/metabolism , Biodegradation, Environmental , Esterases/metabolism
2.
World J Microbiol Biotechnol ; 39(11): 299, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37667093

ABSTRACT

The aim of this work was to find out if biofilms can be made by lactic acid bacteria (LAB) isolated from agave plants using agave fructans as sole carbohydrate substrates or if it was necessary to use fructose as a breakdown product of such polymers. This is part of a research project geared to develop industrial lactic acid production from agave fructans, an abundant raw material in Mexico's agave plantations. Present results showed that nine strains of LAB isolated from Agave salmiana and belonging to genus Lacticaseibacillus and Enterococcus produced exopolysaccharides directly from agave fructans to a greater extent than with fructose. The best polysaccharide productions in planktonic cultures were Lacticaseibacillus paracasei strains DG2, DG3, DG4 and DG8. Furthermore, all nine LAB strains produced biofilms on polystyrene microplates, much better with agave fructans than with fructose. In most strains, biofilm formation was favored at pH from 6.0 to 6.5, except for strains DG7 and DG9 where pH 5.5 was optimal. Biofilm formation required between 3 and 5 days of incubation in all Lacticaseibacillus paracasei strains, whereas Enterococcus faecium required a little less of 3 days. Present results support the straight use of agave fructans to develop LAB biofilms using agave epiphytic bacteria. This finding simplifies upstream processing of agave fructans to be used for future lactic acid fermentation in LAB biofilm reactors.


Subject(s)
Agave , Lacticaseibacillus paracasei , Lactobacillales , Fructans , Biofilms , Fructose , Lactic Acid
3.
World J Microbiol Biotechnol ; 37(9): 154, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34398297

ABSTRACT

Bacillus thuringiensis (Bt) (Bacillales:Bacillaceae) is a gram-positive bacterium that produces spores, several virulence factors and insecticidal toxins, making this microorganism the most used biopesticide worldwide. The use of inert supports such as polyurethane foam (PUF) in solid cultures has been a great alternative to produce various metabolites, including those produced by Bt. In this study we compared the yields, productivity and quality of the spores by two wild strains of Bt, (Y15 and EA3), grown in media with high substrate concentration in both culture systems: liquid and solid (PUF as solid inert support). Both strains showed 2.5- to 30-fold increases in spore production and productivity in solid culture, which showed an even greater increase when considering the spores retained in the PUF observed by scanning electron microscopy. Moreover, spore produced in solid culture showed up to sevenfold higher survival after a heat-shock treatment, relative to spores from liquid culture. The infectivity against larvae of Galleria mellonella (Lepidoptera:Pyralidae) improved also in spores from solid cultures. This comparison showed that the culture of Bt on solid support has clear advantages over liquid culture in terms of the production and quality of spores, and that those advantages can be attributed only to the culture system, as the same media composition was used in both systems.


Subject(s)
Bacillus thuringiensis/physiology , Polyurethanes/chemistry , Spores, Bacterial/growth & development , Animals , Bacillus thuringiensis/pathogenicity , Bacteriological Techniques , Culture Media/chemistry , Larva/microbiology , Lepidoptera/microbiology , Microscopy, Electron, Scanning
4.
3 Biotech ; 10(11): 488, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33123455

ABSTRACT

In this study, the induction of esterase activity during the degradation of a high concentration of di(2-ethylhexyl) phthalate (DEHP) (1500 mg l-1) by Fusarium culmorum was investigated using Ca(NO3)2 as nitrogen source under liquid fermentation conditions. Assessments of esterase activities through biochemical tests and zymographic assays, as well as fungal growth were studied. A high concentration of DEHP increased esterase activity in F. culmorum, which produces five esterase isoforms (26.4, 31.7, 43, 73.6 and 125 kDa), which were different in abundance and molecular weight to those produced constitutively in glucose-containing medium (control medium). F. culmorum showed higher µ and Y X/S values in DEHP-containing medium than those observed in the control medium. F. culmorum has great potential for use in the restoration of sites contaminated with high concentrations of DEHP and even of other phthalates with less complex structures.

5.
Folia Microbiol (Praha) ; 65(5): 835-847, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32410069

ABSTRACT

Halophilic bacterias from saline soil from former Lake Texcoco were isolated, identified based on 16 rRNA and tested to produce glucolytic, nucleolytic, proteolytic and lipolytic exoenzymes. The Bacillus, Virgibacillus, Kocuria, Salinicoccus, Gracilibacillus, Halobacillus, Tenuibacillus and Nesterekonia genera where identified. Lipase/eserases and proteases from Nesterenkonia sp. and Nesterenkonia aethiopica showed halotolerant characteristics and were selected to synthesize the oleochemical n-butyl oleate and antioxidant peptides from muscle protein of common carp (Cyprinus carpio), respectively. In organic media (2,2,4-Trimethylpentane), the lipase/esterases from Nesterenkonia sp. (0.6 U/mL) and N. aethiopica (1.2 U/mL) achieved a 62.7% and 53.2% of n-butyl oleate conversion, respectively. The protein hydrolysis from muscle of common carp (C. carpio) showed a degree of hydrolysis of 4.5 ± 0.2% and 2.8 ± 0.1% when proteases from Nesterenkonia sp. and N. aethiopica were used, respectively. Three peptidic fractions ranging molecular masses between 254 and 1002 Da [M + H] show antioxidant scavenging activity, and the principal fraction with a peptide of 547.3 Da [M + H] showed an inhibition of 37.7 ± 1.8% and 16.3 ± 0.6%, when 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) were used, respectively. These findings showed that the enzymatic battery of the halophilic bacteria from former lake Texcoco can be used in hydrolysis and synthesis of molecules with applications in different fields as food technology or bioenergy.


Subject(s)
Antioxidants/metabolism , Bacteria/classification , Bacteria/metabolism , Oleic Acids/metabolism , Salt Tolerance , Animals , Antioxidants/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Carps/metabolism , Esterases/metabolism , Hydrolysis , Lakes , Lipase/metabolism , Peptide Hydrolases/metabolism , Peptides/chemistry , Peptides/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil Microbiology
6.
Bioprocess Biosyst Eng ; 42(9): 1527-1535, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31115662

ABSTRACT

To determine the growth kinetic parameters, substrate consumption and spore yields for Bacillus thuringiensis, liquid fermentation (SmF) and solid-state fermentation (SSF), on polyurethane foam (PUF), were analysed comprising strictly the same media. The analysis included three medium concentrations, maintaining the same C/N ratio, with initial glucose at 12.5, 25, and 50 g L-1 (1X, 2X and 4X, respectively). SSF at 2X and 4X produced higher amounts of total biomass, vegetative growth and even early sporulation. Notably, at all glucose concentrations, sporulation was not inhibited in SSF as seen partially in SmF at 2X, and totally at 4X. Micrographs from PUF cultures showed thin layers of bacteria forming large horizontal aggregates, associated with the higher biomass yields and the early cell differentiation. This is the first work showing that SSF improves spore yields of B. thuringiensis in media with high substrate concentrations, using PUF as a research tool for comparative analysis with application in new production systems including biofilm-forming microorganisms.


Subject(s)
Bacillus thuringiensis/growth & development , Biomass , Spores, Bacterial/growth & development , Culture Media/chemistry , Culture Media/pharmacology
7.
Ecotoxicol Environ Saf ; 170: 293-299, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30530181

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which is considered an endocrine disrupting pollutant. Growth kinetics and esterases activity by biochemical tests and polyacrylamide gel electrophoresis were characterized for Fusarium culmorum grown in DEHP-supplemented (1000 mg/L) medium as the only carbon source and in control medium with glucose. Intermediate compounds of biodegraded DEHP were identified by GC-MS. F. culmorum degraded 92% of DEHP within 36 h. DEHP was degraded to butanol, hexanal, catechol and acetic acid. It is suggested that the first two compounds would transform into butanediol and the last two would enter into the Krebs cycle and would be mineralized to CO2 and H2O. DEHP induced eight esterase isoforms, which were different to those constitutive isoforms produced in the control medium. It is suggested that five enzymes (25.7, 29.5, 31.8, 97.6 and 144.5 kDa) detected during the first 36 h be involved in the primary biodegradation of DEHP. The rest of the enzymes (45.9, 66.6 and 202.9 kDa) might be involved in the final steps for DEHP metabolism. F. culmorum has a promising practical application in the treatment of DEHP-contaminated environments because it can secrete specific esterase to breakdown high concentrations of DEHP in a short period of time. This research represents the first approach for the study of esterase involved in the DEHP degradation by fungi using this phthalate as the sole source of carbon and energy.


Subject(s)
Diethylhexyl Phthalate/analysis , Endocrine Disruptors/analysis , Environmental Pollutants/analysis , Fusarium/growth & development , Plasticizers/analysis , Biodegradation, Environmental , Esterases/metabolism , Fusarium/enzymology , Kinetics
8.
World J Microbiol Biotechnol ; 32(7): 111, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27263006

ABSTRACT

Conidia production and quality from mycoinsecticides in solid-state cultures (SSC) are frequently inferred from superficial culture (SC) results. Both parameters were evaluated for two Isaria fumosorosea strains (ARSEF 3302 and CNRCB1), in SC and SSC, using culture media with the same chemical composition. For both strains, conidia production was higher in SC than SSC in terms of conidia per gram of dry substrate. Germination in both strains did not show significant differences between SC and SSC (>90 %). Similarly, conidia viability in ARSEF 3302 strain did not show differences at early stages between SC and SSC, but was higher in SC compared to SSC in the late stage of culture; in contrast, conidia from CNRCB1 strain did not differ between both culture systems. Some infectivity parameters improved in conidia from SSC, compared to SC at the early stages, but these differences disappeared at the final stage, independently of the strain. Both strains showed decreased conidia production when 26 % O2 pulses were applied; nevertheless, conidiation in SSC was two orders of magnitude more sensitive to oxidant pulses. In SC with 26 % O2 pulses, conidia viability for both strains at early stages, was higher than in normal atmospheric conditions. Infectivity towards Galleria mellonella larvae was similar between conidia from normal atmosphere and oxidant conditions; notably, for the strain ARSEF 3302 infectivity decreased at the final stage. This study shows the intrinsic differences between SC and SSC, which should be considered when using SC as a model to design production processes in SSC.


Subject(s)
Hypocreales/growth & development , Oxidants/pharmacology , Animals , Atmospheric Pressure , Culture Media , Hypocreales/drug effects , Hypocreales/pathogenicity , Hypocreales/physiology , Larva/microbiology , Lepidoptera/microbiology , Microbial Viability , Mycology/methods , Oxygen/pharmacology , Spores, Fungal/growth & development , Spores, Fungal/physiology
9.
Appl Biochem Biotechnol ; 177(2): 446-57, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26184013

ABSTRACT

Conidia of the entomopathogenic fungus Isaria fumosorosea are used to control insect pests in crops. Commercially available mycoinsecticides manufactured with this fungus are produced on a large scale via solid-state cultures (SSC). In order to favour gaseous exchange in SCC, texturizers can be added to increase porosity fraction (ε). This work presents results of water hyacinth (Eichhornia crassipes) as a novel texturizer. A mixture of parboiled rice (PR), with a ε = 0.23, was used as a substrate, which was then mixed with water hyacinth (WH amendment) as a texturizer at different proportions affecting ε. Strains CNRCB1 and ARSEF3302 of I. fumosorosea yielded 1.6 (1.49-1.71) × 10(9) and 7.3 (7.02-7.58) × 10(9) conidia per gram of initial dry rice after 8 days, at ε values of 0.34 and 0.36, respectively. Improvement of conidial yields corresponded to 1.33 and 1.55 times, respectively, compared to rice alone using WH amendment in the mixtures PR:WH (%) at 90-10 and 80-20. In addition, infectivity against Galleria mellonella larvae was maintained. This is the first report of the use of water hyacinth as a texturizer in SSC, affecting ε, which is proposed a key parameter in conidia production by I. fumosorosea, without affecting conidial infectivity.


Subject(s)
Eichhornia/physiology , Hypocreales/physiology , Oryza/microbiology , Spores, Fungal/growth & development , Biological Assay , Porosity , Spores, Fungal/pathogenicity
11.
Mycopathologia ; 169(5): 387-94, 2010 May.
Article in English | MEDLINE | ID: mdl-20039138

ABSTRACT

Rice and oat flours were analyzed as media for the production of conidia by M. anisopliae var. lepidiotum. The presence of peptone increased conidia yield regardless of the substrate used; however, the highest yield was achieved on oat flour media. The effect of oxygen on conidia production using oat-peptone medium was also studied at two levels: Normal atmosphere (21% O(2)) and Oxygen-rich pulses (26% O(2)). Maximum conidia production (4.25 x 10(7) conidia cm(-2)) was achieved using 26% O(2) pulses after 156 h of culture, which was higher than 100% relative to conidial levels under normal atmosphere. Conidia yield per gram of biomass was 2.6 times higher with 26% O(2) (1.12 x 10(7) conidia mg(-1)). Conidia quality parameters, such as germination and hydrophobicity, did not show significant differences (P < 0.05) between those treatments. Bioassays parameters, using Tenebrio molitor adults, were analyzed for conidia obtained in both atmospheres and data were fitted to an exponential model. The specific mortality rates were 2.22 and 1.26 days(-1), whereas lethal times for 50% mortality were 3.90 and 4.31 days, for 26% O(2) pulses and 21% O(2) atmosphere, respectively. These results are relevant for production processes since an oxygen increase allowed superior levels of conidia by M. anisopliae without altering quality parameters and virulence toward Tenebrio molitor adults.


Subject(s)
Culture Media/pharmacology , Metarhizium/drug effects , Metarhizium/isolation & purification , Oxygen/pharmacology , Pest Control, Biological , Animals , Avena/chemistry , Cell Culture Techniques , Culture Media/chemistry , Metarhizium/growth & development , Oryza/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Spores, Fungal/isolation & purification , Tenebrio/microbiology
12.
Eukaryot Cell ; 6(4): 710-20, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17277172

ABSTRACT

Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4'-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (DeltacfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, DeltafluG, and DeltatmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both DeltatmpA and DeltafluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans.


Subject(s)
Aspergillus nidulans/enzymology , Bacterial Proteins/metabolism , Reproduction, Asexual/physiology , Transferases (Other Substituted Phosphate Groups)/metabolism , Alleles , Aspergillus nidulans/cytology , Aspergillus nidulans/growth & development , Bacterial Proteins/chemistry , Biological Factors/chemistry , Ergosterol/analogs & derivatives , Ergosterol/chemistry , Fermentation , Genes, Fungal , Lysine/biosynthesis , Mutation/genetics , Phylogeny , Pigmentation , Protein Structure, Tertiary , Siderophores/biosynthesis , Spores, Fungal/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry
13.
Biotechnol Bioeng ; 93(6): 1123-9, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16470870

ABSTRACT

The present study evaluated the influence of water activity and lactose concentration on the synthesis of galactooligosaccharides (GOS), by means of a hyperthermophilic beta-glycosidase in an organic system. The production of GOS gradually grew as water activity increased in the reaction system; later, their synthesis decreased as water activity increased. The authors used the response surface methodology to study how different water activities and different concentrations of lactose influenced the synthesis of GOS and their length. In every case, the variable that proved to have the greatest effect on GOS synthesis was water activity. Maximum GOS3 synthesis was reached at a water activity interval of 0.44-0.57, with lactose concentrations of 0.06%-0.1%, while GOS4 and GOS5 maxima were reached at water activity intervals of 0.47-0.57 and 0.49-0.60, respectively. The research showed that higher water activity was required to synthesize GOS of greater length. Synthesis of GOS would then depend on the flexibility of the enzyme, which in turn would depend on water activity of the reaction system. This hypothesis was supported by experiments in which the reaction temperature was modified in order to change the flexibility of the enzyme, thus leading to longer GOS.


Subject(s)
Acetone/chemistry , Galactose/biosynthesis , Glycoside Hydrolases/metabolism , Oligosaccharides/biosynthesis , Water/chemistry , Catalysis , Galactose/chemistry , Glucose/chemistry , Glucose/metabolism , Glycoside Hydrolases/chemistry , Hot Temperature , Kinetics , Lactose/chemistry , Lactose/metabolism , Oligosaccharides/chemistry , Organic Chemicals/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solvents/chemistry , Temperature
14.
Microbiology (Reading) ; 149(Pt 10): 2941-2946, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14523126

ABSTRACT

An extracellular tannase was produced from solid-state cultures of Aspergillus niger. The enzyme was purified to homogeneity from the cell-free culture broth by preparative isoelectric focusing and by FPLC using anion-exchange and gel-filtration chromatography. SDS-PAGE analysis as well as gel localization studies of purified tannase indicated the presence of two enzyme forms, with molecular masses of 90 kDa and 180 kDa. The tannase had an isoelectric point of 3.8, a temperature optimum of 60-70 degrees C and a pH optimum of 6.0. The substrate specificity of the tannase was determined by HPLC analysis of tannin substrates and products. The enzyme was able to remove gallic acid from both condensed and hydrolysable tannins. Internal sequences were obtained from each of the gel-purified and trypsin-digested tannase forms. The peptide sequences obtained from both forms were identical to sequences within a beta-glucosidase from Aspergillus kawachii. The purified tannase was tested for beta-glucosidase activity and was shown to hydrolyse cellobiose efficiently. However, no beta-glucosidase activity was detected when the enzyme was assayed in the presence of tannic acid.


Subject(s)
Aspergillus niger/enzymology , Carboxylic Ester Hydrolases/isolation & purification , beta-Glucosidase/isolation & purification , Amino Acid Sequence , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Molecular Sequence Data , beta-Glucosidase/metabolism
15.
J Biosci Bioeng ; 95(3): 288-92, 2003.
Article in English | MEDLINE | ID: mdl-16233407

ABSTRACT

It is well known that 5,5-diethylbarbituric acid (barbital) in the culture medium can stimulate the production of rifamycin B by Amycolatopsis mediterranei, particularly in industrial processes. However, the mechanism by which barbital exerts this effect is unknown. Results in this work show that the barbital effect is only evident under low aeration conditions (50-ml microfermentors with 7 ml of medium, 0.08 l/h air flow). Under these conditions, cultures with barbital showed similar CO2 production (in relation to a control without barbital), but higher oxygen uptake indicated that the extra O2 consumed was used in the increased rifamycin biosynthesis. Moreover, using a resting cell system where no antibiotic is produced, it was possible to show that barbital inhibits the respiratory chain, since O2 uptake decreased by 30%. Finally, we present biochemical results that suggest that a cytochrome P450-type monoxygenase, which can use atmospheric oxygen, is induced by barbital in an industrial-type strain of A. mediterranei.

16.
Appl Biochem Biotechnol ; 102-103(1-6): 63-70, 2002.
Article in English | MEDLINE | ID: mdl-12396111

ABSTRACT

Invertase production by Aspergillus niger grown by solid-state fermentation was found to be higher than by conventional submerged fermentation. The haploid mutant strains Aw96-3 and Aw96-4 showed better productivity of various enzymes, as compared to wild-type parental strain A. niger C28B25. Here we use parasexual crosses of those mutants to increase further the productivity of invertase in solid-state fermentation. We isolated both a diploid (DAR2) and an autodiploid (AD96-4) strain, which were able to grow in minimal medium after mutation complementation of previously isolated haploid auxotrophic strains. Invertase production was measured in solid-state fermentation cultures, using polyurethane foam as an inert support for fungal growth. Water activity value (Aw) was adjusted to 0.96, since low Aw values are characteristic in some solid-state fermentation processes. Such diploid strains showed invertase productivity levels 5-18 times higher than levels achieved by the corresponding haploid strains. For instance, values for C28B25, Aw96-3, Aw96-4, DAR2, and AD96-4 were 441, 254, 62, 1324, and 2677 IU/(L x h), respectively. These results showed that genetic recombination, achieved through parasexual crosses in A. niger, results in improved strains with potential applications for solid-state fermentation processes.


Subject(s)
Aspergillus niger/enzymology , Aspergillus niger/genetics , Glycoside Hydrolases/biosynthesis , Biotechnology/methods , Diploidy , Fermentation , Glycoside Hydrolases/genetics , Haploidy , Kinetics , Recombination, Genetic , beta-Fructofuranosidase
17.
Appl Biochem Biotechnol ; 102-103(1-6): 407-14, 2002.
Article in English | MEDLINE | ID: mdl-12396141

ABSTRACT

Undesirable protease production by Aspergillus niger Aa-20 in submerged culture and solid-state culture was evaluated using different concentrations of tannic acid as sole carbon source in a model system designed for tannase production. Protease production was found to be dependent on the culture system used (submerged culture or solid-state culture) and on the initial tannic acid concentration. Expression of protease activity in submerged culture was higher (up to 10 times) than activity obtained in solid-state culture, using identical culture medium composition. In submerged culture, the lowest final protease activity (0.13 IU) was obtained with the highest tannic acid concentration, while in solid-state culture protease activity was not affected by changes in initial substrate concentration. Absence of detectable proteolytic activity in solid-state culture is related to high production of tannase enzyme. Hence, the use of solid-state culture for fungal enzyme production may allow for higher and more stable enzyme titers present in culture extracts.


Subject(s)
Aspergillus niger/enzymology , Biotechnology/methods , Carboxylic Ester Hydrolases/biosynthesis , Endopeptidases/biosynthesis , Hydrolyzable Tannins/metabolism , Aspergillus niger/drug effects , Biomass , Culture Media , Endopeptidases/metabolism , Enzyme Stability , Hydrolyzable Tannins/pharmacology , Protease Inhibitors/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...