Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39203326

ABSTRACT

We report the results of synthesis of zinc selenide (ZnSe) nanocrystals into SiO2/Si track templates formed by irradiation with 200 MeV Xe ions up to a fluence of 107 ions/cm2. Zinc selenide nanocrystals were obtained by chemical deposition from the alkaline aqueous solution. Scanning electron microscopy, X-ray diffractometry, Raman and photoluminescence spectroscopy, and electrical measurements were used for characterization of synthesized ZnSe/SiO2nanoporous/Si nanocomposites. XRD data for as-deposited precipitates revealed the formation of ZnSe nanocrystals with cubic crystal structure, spatial syngony F-43m (216). According to non-empirical calculations using GGA-PBE and HSE06 functionals, ZnSe crystal is a direct-zone crystal with a minimum bandgap width of 2.36 eV and anisotropic electronic distribution. It was found that a thermal treatment of synthesized nanocomposites at 800 °C results in an increase in ZnSe nanocrystallites size as well as an increase in emission intensity of created precipitates in a broad UV-VIS spectra range. However, vacuum conditions of annealing still do not completely prevent the oxidation of zinc selenide, and a formation of hexagonal ZnO phase is registered in the annealed samples. The current-voltage characteristics of the synthesized nanocomposites proved to have n-type conductivity, as well as increased conductivity after annealing.

SELECTION OF CITATIONS
SEARCH DETAIL