Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 42(18): 3789-3801, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38714448

ABSTRACT

Inactivated vaccines lack the capability to serologically differentiate between infected and vaccinated animals, thereby impeding the effective eradication of pathogen. Conversely, vaccines based on virus-like particles (VLPs) emulate natural viruses in both size and antigenic structure, presenting a promising alternative to overcome these limitations. As the complexity of swine infectious diseases increases, the increase of vaccine types and doses may intensify the stress response. This exacerbation can lead to diminished productivity, failure of immunization, and elevated costs. Given the critical dynamics of co-infection and the clinically indistinguishable symptoms associated with foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), there is a dire need for an efficacious intervention. To address these challenges, we developed a combined vaccine composed of three distinct VLPs, specifically designed to target SVA and FMDV serotypes O and A. Our research demonstrates that this trivalent VLP vaccine induces antigen-specific and robust serum antibody responses, comparable to those produced by the respective monovalent vaccines. Moreover, the immune sera from the combined VLP vaccine strongly neutralized FMDV type A and O, and SVA, with neutralization titers comparable to those of the individual vaccines, indicating a high level of immunogenic compatibility among the three VLP components. Importantly, the combined VLPs vaccines-immunized sera conferred efficient protection against single or mixed infections with FMDV type A and O, and SVA viruses in pigs. In contrast, individual vaccines could only protect pigs against homologous virus infections and not against heterologous challenges. This study presents a novel combined vaccines candidate against FMD and SVA, and provides new insights for the development of combination vaccines for other viral swine diseases.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Picornaviridae , Swine Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease Virus/immunology , Swine , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Swine Diseases/prevention & control , Swine Diseases/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Picornaviridae/immunology , Picornaviridae Infections/prevention & control , Picornaviridae Infections/immunology , Picornaviridae Infections/veterinary , Female , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Coinfection/prevention & control , Coinfection/immunology
2.
Virology ; 579: 94-100, 2023 02.
Article in English | MEDLINE | ID: mdl-36623353

ABSTRACT

Virus-like particles (VLPs) are extremely potent, safe, and serviceable vaccine platforms. Good assembly efficiency of VLPs is the key to reducing vaccine production costs and eliciting a robust immune response. This study adopted CpG and Poly (I:C) as scaffolds to facilitate the assembly of foot-and-mouth disease virus (FMDV) VLPs in vitro. The VLPs and the co-assembly products were characterized by particle size, zeta potential, gel retardation measurement, nuclease digestion experiments, size-exclusion chromatography, transmission electron microscopy and circular dichroism analysis. Our results indicated the successful encapsulation of CpG and Poly (I:C) inside VLPs without any effect on shape or size. Vaccination in mice also elicited a robust immune response. This study demonstrated that CpG and Poly (I:C) improved the efficiency of FMDV VLPs assembly and enhanced immune response, further proposing a new idea for improving the efficiency of VLPs assembly and enriching the in vitro VLPs assembly strategies.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Vaccines, Virus-Like Particle , Animals , Mice , Poly I-C , Vaccination , Immunity , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL