Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Mol Psychiatry ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39384965

ABSTRACT

Prenatal imprinting to interleukin 17A (IL-17A) triggers behavioral disorders in offspring. However, reported models of maternal immune activation utilizing immunostimulants, lack specificity to elucidate the anatomical compartments of IL-17A's action and the distinct behavioral disturbances it causes. By combining transgenic IL-17A overexpression with maternal deficiency in its receptor, we established a novel model of prenatal imprinting to maternal IL-17A (acronym: PRIMA-17 model). This model allowed us to study prenatal imprinting established exclusively through embryo-restricted IL-17A responses. We demonstrated a transfer of transgenic IL-17A across the placental barrier, which triggered the development of selected behavioral deficits in mouse offspring. More specifically, embryonic responses to IL-17A resulted in communicative impairment in early-life measured by reduced numbers of nest retrieval calls. In adulthood, IL-17A-imprinted offspring displayed an increase in anxiety-like behavior. We advocate our PRIMA-17 model as a useful tool to study neurological deficits in mice.

2.
EMBO Rep ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333628

ABSTRACT

Inflammatory bowel disease (IBD) is a disorder causing chronic inflammation in the gastrointestinal tract, and its pathophysiological mechanisms are still under investigation. Here, we find that mice deficient of YOD1, a deubiquitinating enzyme, are highly susceptible to dextran sulfate sodium (DSS)-induced colitis. The bone marrow transplantation experiment reveals that YOD1 derived from hematopoietic cells inhibits DSS colitis. Moreover, YOD1 exerts its protective role by promoting nucleotide-binding oligomerization domain 2 (NOD2)-mediated physiological inflammation in macrophages. Mechanistically, YOD1 inhibits the proteasomal degradation of receptor-interacting serine/threonine kinase 2 (RIPK2) by reducing its K48 polyubiquitination, thereby increasing RIPK2 abundance to enhance NOD2 signaling. Consistently, the protective function of muramyldipeptide, a NOD2 ligand, in experimental colitis is abolished in mice deficient of YOD1. Importantly, YOD1 is upregulated in colon-infiltrating macrophages in patients with colitis. Collectively, this study identifies YOD1 as a novel regulator of colitis.

3.
J Mol Med (Berl) ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302418

ABSTRACT

The deubiquitinating enzyme CYLD negatively regulates NF-κB signaling by removing activating ubiquitin chains from several members of the NF-κB pathway. Thereby, CYLD is critical for the maintenance and differentiation of various immune cells. Despite the importance of the NF-κB pathway in microglia regulation, the role of CYLD in microglia has not been investigated so far. In this study, we investigated whether CYLD in microglia can protect against neuroinflammation using a newly generated conditional mouse strain (Rosa26-Cyld-tdTomato) that allows cell type-specific CYLD overexpression. Here, we show that overexpression of CYLD in microglia did not alter microglia numbers or microglia morphology in different brain regions. Additionally, CYLD overexpression did not modify the microglial response to LPS-induced neuroinflammation or the disease severity in experimental autoimmune encephalomyelitis (EAE). Finally, also immune cell infiltration into the CNS during EAE and under steady state conditions remained unaffected by microglial CYLD overexpression. Our findings suggest that CYLD overexpression does not alter microglial function, and thus does not represent a viable therapeutic strategy in neuroinflammatory conditions. This study highlights the complexity of ubiquitin-mediated signaling in neuroinflammation and the need for cell-type-specific investigations. The Rosa26-Cyld-tdTomato mouse model offers a valuable tool for studying CYLD's role across various tissues and cell types. KEY MESSAGES: Novel mouse strain for cell type-specific overexpression of the deubiquitinating enzyme CYLD. CYLD overexpression in microglia did not alter microglia numbers or morphology in the steady state. CYLD overexpression in microglia did not protect mice from LPS-induced neuroinflammation or EAE. CYLD overexpression in microglia did not influence their gene expression during neuroinflammation.

4.
Neuron ; 112(16): 2661-2663, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173587

ABSTRACT

In this issue of Neuron, Chadarevian et al.1 and Munro et al.2 demonstrate how the absence of homeostatic microglia leads to severe neuropathologies, including axonal spheroids, calcifications, myelination abnormalities, and gliosis, associated with leukoencephalopathy and age-related neurodegeneration. Transplantation of healthy microglia can reverse these conditions, opening new avenues for therapeutic research.


Subject(s)
Microglia , Neurodegenerative Diseases , Microglia/pathology , Humans , Neurodegenerative Diseases/pathology , Animals , Nerve Degeneration/pathology
5.
Sci Adv ; 10(34): eadl3975, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39167656

ABSTRACT

Genetic TNFAIP3 (A20) inactivation is a classical somatic lymphoma lesion and the genomic trait in haploinsufficiency of A20 (HA20). In a cohort of 34 patients with HA20, we show that heterozygous TNFAIP3 loss skews immune repertoires toward lymphocytes with classical self-reactive antigen receptors typically found in B and T cell lymphomas. This skewing was mediated by a feed-forward tumor necrosis factor (TNF)/A20/nuclear factor κB (NF-κB) loop that shaped pre-lymphoma transcriptome signatures in clonally expanded B (CD81, BACH2, and NEAT1) or T (GATA3, TOX, and PDCD1) cells. The skewing was reversed by anti-TNF treatment but could also progress to overt lymphoma. Analysis of conditional TNFAIP3 knock-out mice reproduced the wiring of the TNF/A20/NF-κB signaling axis with permissive antigen receptors and suggested a distinct regulation in B and T cells. Together, patients with the genetic disorder HA20 provide an exceptional window into A20/TNF/NF-κB-mediated control of immune homeostasis and early steps of lymphomagenesis that remain clinically unrecognized.


Subject(s)
Haploinsufficiency , Homeostasis , NF-kappa B , Tumor Necrosis Factor alpha-Induced Protein 3 , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Humans , Mice , NF-kappa B/metabolism , Mice, Knockout , Female , Male , Signal Transduction , Middle Aged , Lymphocytes/immunology , Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Adult , Tumor Necrosis Factor-alpha/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphoma/genetics , Lymphoma/immunology , Lymphoma/pathology
6.
Immun Ageing ; 21(1): 54, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095816

ABSTRACT

B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.

7.
Eur Heart J Open ; 4(4): oeae046, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015379

ABSTRACT

Aims: The cytokine interleukin-6 (IL-6) plays a central role in the inflammation cascade as well as cardiovascular disease progression. Since myeloid cells are a primary source of IL-6 formation, we aimed to generate a mouse model to study the role of myeloid cell-derived IL-6 in vascular disease. Methods and results: Interleukin-6-overexpressing (IL-6OE) mice were generated and crossed with LysM-Cre mice, to generate mice (LysM-IL-6OE mice) overexpressing the cytokine in myeloid cells. Eight- to 12-week-old LysM-IL-6OE mice spontaneously developed inflammatory colitis and significantly impaired endothelium-dependent aortic relaxation, increased aortic reactive oxygen species (ROS) formation, and vascular dysfunction in resistance vessels. The latter phenotype was associated with decreased survival. Vascular dysfunction was accompanied by a significant accumulation of neutrophils, monocytes, and macrophages in the aorta, increased myeloid cell reactivity (elevated ROS production), and vascular fibrosis associated with phenotypic changes in vascular smooth muscle cells. In addition to elevated Mcp1 and Cxcl1 mRNA levels, aortae from LysM-IL-6OE mice expressed higher levels of inducible NO synthase and endothelin-1, thus partially accounting for vascular dysfunction, whereas systemic blood pressure alterations were not observed. Bone marrow (BM) transplantation experiments revealed that vascular dysfunction and ROS formation were driven by BM cell-derived IL-6 in a dose-dependent manner. Conclusion: Mice with conditional overexpression of IL-6 in myeloid cells show systemic and vascular inflammation as well as endothelial dysfunction. A decrease in circulating IL-6 levels by replacing IL-6-producing myeloid cells in the BM improved vascular dysfunction in this model, underpinning the relevant role of IL-6 in vascular disease.

8.
Cell Metab ; 36(8): 1726-1744.e10, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38986617

ABSTRACT

The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.


Subject(s)
Glutathione , Interleukin-22 , Interleukins , Mitochondria , Th17 Cells , Animals , Interleukins/metabolism , Mitochondria/metabolism , Glutathione/metabolism , Th17 Cells/metabolism , Th17 Cells/immunology , Mice , Signal Transduction , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Citrobacter rodentium , Intestines/pathology , Intestines/immunology , Inflammation/metabolism , Inflammation/pathology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/pathology , Mice, Knockout , TOR Serine-Threonine Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
9.
STAR Protoc ; 5(3): 103154, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38935510

ABSTRACT

The intestinal lamina propria (LP) is a leukocyte-rich cornerstone of the immune system owing to its vital role in immune surveillance and barrier defense against external pathogens. Here, we present a protocol for isolating and analyzing immune cell subsets from the mouse intestinal LP for further downstream applications. Starting from tissue collection and cleaning, epithelium removal, and enzymatic digestion to collection of single cells, we explain each step in detail to maximize the yield of immune cells from the intestinal LP.


Subject(s)
Intestinal Mucosa , Animals , Mice , Intestinal Mucosa/immunology , Intestinal Mucosa/cytology , Cell Separation/methods , Flow Cytometry/methods , Leukocytes/immunology , Leukocytes/cytology
10.
JHEP Rep ; 6(4): 101013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38481390

ABSTRACT

Background & Aims: Hepatocellular necrosis is common in both acute and chronic liver injury and may evolve to fibrosis and liver failure. Injury leads to accumulation of necrotic cell debris in the liver, which drives persistent inflammation and poor recovery. This study investigated the role of natural antibodies (NAbs) in the clearance of necrotic cells in the injured liver, their impact on tissue regeneration and their potential as a therapy for acute liver injury. Methods: We used murine models of drug-induced liver injury and focal thermal injury in immunocompetent and antibody-deficient mice (Rag2-/- and IgMi). Intravital microscopy was used to investigate the role of NAbs in the phagocytosis of necrotic cells in the liver in vivo. Immunostainings were used to quantify the extent of liver necrosis (fibrin), antibody deposition (IgM and IgG) and cellular proliferation (Ki67). Results: Both IgM and IgG NAbs bound necrotic liver areas and opsonized multiple debris molecules released during hepatocellular necrosis such as DNA, histones, actin, phosphoinositides and mitochondrial cardiolipin, but not phosphatidylserine. Rag2-/- and IgMi mice presented impaired recovery from liver injury, which was correlated to the sustained presence of necrotic debris in the tissue, prolonged inflammation and reduced hepatocellular proliferation. These defects were rescued by treating mice with NAbs after the induction of injury. Mechanistically, in vitro and in vivo, phagocytosis of necrotic debris was dependent on NAbs via Fcγ receptors and CD11b. Moreover, NAb-mediated phagocytosis of necrotic cell debris occurs in two waves, firstly driven by neutrophils and then by recruited monocytes. Importantly, supplementation of immunocompetent mice with NAbs also improved liver regeneration significantly, demonstrating the therapeutic potential of natural IgM and IgG. Conclusion: NAbs drive the phagocytosis of necrotic cells in liver injury and promote liver regeneration and recovery. Impact and implications: Treatment with natural antibodies after acute liver injury improved recovery by increasing the clearance of necrotic debris and by improving cellular proliferation in the liver. This preclinical study provides a basis for the development of an immunotherapy for patients with early-stage, reversible, liver injury that aims to prevent disease chronification into fibrosis and liver failure.

11.
Nat Neurosci ; 27(1): 63-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38049579

ABSTRACT

Hypertension (HTN), a disease afflicting over one billion individuals worldwide, is a leading cause of cognitive impairment, the mechanisms of which remain poorly understood. In the present study, in a mouse model of HTN, we find that the neurovascular and cognitive dysfunction depends on interleukin (IL)-17, a cytokine elevated in individuals with HTN. However, neither circulating IL-17 nor brain angiotensin signaling can account for the dysfunction. Rather, IL-17 produced by T cells in the dura mater is the mediator released in the cerebrospinal fluid and activating IL-17 receptors on border-associated macrophages (BAMs). Accordingly, depleting BAMs, deleting IL-17 receptor A in brain macrophages or suppressing meningeal T cells rescues cognitive function without attenuating blood pressure elevation, circulating IL-17 or brain angiotensin signaling. Our data unveil a critical role of meningeal T cells and macrophage IL-17 signaling in the neurovascular and cognitive dysfunction in a mouse model of HTN.


Subject(s)
Cognitive Dysfunction , Hypertension , Mice , Animals , Interleukin-17 , Angiotensin II , T-Lymphocytes , Sodium Chloride, Dietary
12.
J Mol Med (Berl) ; 102(2): 247-255, 2024 02.
Article in English | MEDLINE | ID: mdl-38127137

ABSTRACT

Objective parameters to quantify psoriatic inflammation are needed for interdisciplinary patient care, as well as preclinical experimental models. This study evaluates neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in psoriasis patients and five murine models of psoriasis-like skin disease based on topical imiquimod application and overexpression of IL-17A under different promotors. We performed a single-center prospective observational study in a German population, investigating psoriasis patients prior to, 4 weeks, and 16 weeks post begin of systemic anti-inflammatory therapy. Psoriasis area and severity index (PASI), blood count, and C-reactive protein (CRP) levels were attained at each timepoint. Additionally, five murine models of psoriasis-like skin disease involving five distinct experimental procedures differing in time of disease-onset and severity were investigated regarding PLR and NLR. Of 43 recruited psoriasis patients, 34 patients were followed up to 16 weeks. The cohort was 69.77% male, showing a median age of 32.0 years (range 19.0-67.0; IQR 26). The median PASI decreased from 16.35 (8.0-50.0; 10.20) to 1.6 (0-10.3; 2.56) after 16 weeks of systemic therapy. Spearman's correlation showed statistically significant positive correlation for NLR with PASI (rs = 0.27, p = 0.006), however not for PLR. NLR, but not PLR, was significantly associated with PASI in a multiple linear regression analysis including age, sex, psoriasis arthritis, and smoking. In the murine models of psoriasis-like skin disease, both NLR and PLR were significantly increased in the acute-severe models compared to controls (p < 0.001, p = 0.005, and p = 0.02, respectively), demonstrating gradually less increased values from severe-acute to mild-late-onset psoriatic phenotype. NLR was significantly associated with PASI in psoriatic patients as well as psoriatic phenotype in different murine psoriasis models. Our data warrants investigation of NLR in psoriasis patients and preclinical psoriasis models as an objective biomarker of psoriatic skin inflammation. KEY MESSAGES : NLR, but not PLR, showed a statistically significant positive correlation with Psoriasis Area and Severity Index (PASI) in our human psoriasis cohort. Both NLR and PLR were significantly increased in murine psoriasis models compared to matched controls, with gradually less increased values from severe-acute to mild-late-onset psoriatic phenotype. NLR may represent an easily available, cheap, and objective parameter to monitor psoriatic inflammation in both clinical patient routine, as well as preclinical experimental murine models.


Subject(s)
Neutrophils , Psoriasis , Humans , Male , Animals , Mice , Young Adult , Adult , Middle Aged , Aged , Female , Disease Models, Animal , Lymphocytes , Inflammation
13.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37856217

ABSTRACT

A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Neuroinflammatory Diseases , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Mice , Blood-Brain Barrier/metabolism , Central Nervous System/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Neuroinflammatory Diseases/metabolism , T-Lymphocytes/metabolism , Inducible T-Cell Co-Stimulator Ligand/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
14.
iScience ; 26(11): 108134, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37867943

ABSTRACT

AIM2 is an interferon-inducible HIN-200 protein family member and is well-documented for its roles in innate immune responses as a DNA sensor. Recent studies have highlighted AIM2's function on regulatory T cells (Treg) and follicular T cells (Tfh). However, its involvement in Th17 cell differentiation remains unclear. This study reveals that AIM2 promotes Th17 cell differentiation. AIM2 deficiency decreases IL-17A production and downregulates key Th17 associated proteins (RORγt, IL-1R1, IL-23R). AIM2 is located in the nucleus of Th17 cells, where it interacts with RORγt, enhancing its binding to the Il17a promoter. The absence of AIM2 hinders naive CD4 T cells from differentiating into functional Th17 cells and from inducing colitis in Rag1-/- mice. This study uncovers AIM2's role as a regulator of Th17 cell transcriptional programming, highlighting its potential as a therapeutic target for Th17 cell-mediated inflammatory diseases.

15.
Sci Immunol ; 8(87): eadd1599, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37774007

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is a spectrum of clinical manifestations ranging from benign steatosis to cirrhosis. A key event in the pathophysiology of MAFLD is the development of nonalcoholic steatohepatitis (NASH), which can potentially lead to fibrosis and hepatocellular carcinoma, but the triggers of MAFLD-associated inflammation are not well understood. We have observed that lipid accumulation in hepatocytes induces expression of ligands specific to the activating immune receptor NKG2D. Tissue-resident innate-like T cells, most notably γδ T cells, are activated through NKG2D and secrete IL-17A. IL-17A licenses hepatocytes to produce chemokines that recruit proinflammatory cells into the liver, which causes NASH and fibrosis. NKG2D-deficient mice did not develop fibrosis in dietary models of NASH and had a decreased incidence of hepatic tumors. The frequency of IL-17A+ γδ T cells in the blood of patients with MAFLD correlated directly with liver pathology. Our findings identify a key molecular mechanism through which stressed hepatocytes trigger inflammation in the context of MAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Inflammation/pathology , Interleukin-17/metabolism , Liver Cirrhosis/metabolism , NK Cell Lectin-Like Receptor Subfamily K , T-Lymphocytes/metabolism
16.
Proc Natl Acad Sci U S A ; 120(40): e2215421120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37756334

ABSTRACT

Externalized histones erupt from the nucleus as extracellular traps, are associated with several acute and chronic lung disorders, but their implications in the molecular pathogenesis of interstitial lung disease are incompletely defined. To investigate the role and molecular mechanisms of externalized histones within the immunologic networks of pulmonary fibrosis, we studied externalized histones in human and animal bronchoalveolar lavage (BAL) samples of lung fibrosis. Neutralizing anti-histone antibodies were administered in bleomycin-induced fibrosis of C57BL/6 J mice, and subsequent studies used conditional/constitutive knockout mouse strains for TGFß and IL-27 signaling along with isolated platelets and cultured macrophages. We found that externalized histones (citH3) were significantly (P < 0.01) increased in cell-free BAL fluids of patients with idiopathic pulmonary fibrosis (IPF; n = 29) as compared to healthy controls (n = 10). The pulmonary sources of externalized histones were Ly6G+CD11b+ neutrophils and nonhematopoietic cells after bleomycin in mice. Neutralizing monoclonal anti-histone H2A/H4 antibodies reduced the pulmonary collagen accumulation and hydroxyproline concentration. Histones activated platelets to release TGFß1, which signaled through the TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize macrophage-derived IL-27 production. TGFß1 evoked multiple downstream mechanisms in macrophages, including p38 MAPK, tristetraprolin, IL-10, and binding of SMAD3 to the IL-27 promotor regions. IL-27RA-deficient mice displayed more severe collagen depositions suggesting that intact IL-27 signaling limits fibrosis. In conclusion, externalized histones inactivate a safety switch of antifibrotic, macrophage-derived IL-27 by boosting platelet-derived TGFß1. Externalized histones are accessible to neutralizing antibodies for improving the severity of experimental pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Interleukin-27 , Humans , Mice , Animals , Mice, Inbred C57BL , Histones , Blood Platelets , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics
17.
Adv Sci (Weinh) ; 10(28): e2301641, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37587766

ABSTRACT

Cerebral ischemic stroke is a leading cause of morbidity and mortality globally. However, the mechanisms underlying ischemic stroke injury remain poorly understood. Here, it is found that deficiency of the ubiquitin-specific protease USP25 significantly aggravate ischemic stroke injury in mice. USP25 has no impact on neuronal death under hypoxic conditions, but reduced ischemic stroke-induced neuronal loss and neurological deficits by inhibiting microglia-mediated neuroinflammation. Mechanistically, USP25 restricts the activation of NF-κB and MAPK signaling by regulating TAB2. As a deubiquitinating enzyme, USP25 removeds K63-specific polyubiquitin chains from TAB2. AAV9-mediated TAB2 knockdown ameliorates ischemic stroke injury and abolishes the effect of USP25 deletion. In both mouse and human brains, USP25 is markedly upregulated in microglia in the ischemic penumbra, implying a clinical relevance of USP25 in ischemic stroke. Collectively, USP25 is identified as a critical inhibitor of ischemic stroke injury and this data suggest USP25 may serve as a therapeutic target for ischemic stroke.

18.
Gut ; 73(1): 92-104, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37595983

ABSTRACT

OBJECTIVE: Wheat has become a main staple globally. We studied the effect of defined pro-inflammatory dietary proteins, wheat amylase trypsin inhibitors (ATI), activating intestinal myeloid cells via toll-like receptor 4, in experimental autoimmune encephalitis (EAE), a model of multiple sclerosis (MS). DESIGN: EAE was induced in C57BL/6J mice on standardised dietary regimes with defined content of gluten/ATI. Mice received a gluten and ATI-free diet with defined carbohydrate and protein (casein/zein) content, supplemented with: (a) 25% of gluten and 0.75% ATI; (b) 25% gluten and 0.19% ATI or (c) 1.5% purified ATI. The effect of dietary ATI on clinical EAE severity, on intestinal, mesenteric lymph node, splenic and central nervous system (CNS) subsets of myeloid cells and lymphocytes was analysed. Activation of peripheral blood mononuclear cells from patients with MS and healthy controls was compared. RESULTS: Dietary ATI dose-dependently caused significantly higher EAE clinical scores compared with mice on other dietary regimes, including on gluten alone. This was mediated by increased numbers and activation of pro-inflammatory intestinal, lymph node, splenic and CNS myeloid cells and of CNS-infiltrating encephalitogenic T-lymphocytes. Expectedly, ATI activated peripheral blood monocytes from both patients with MS and healthy controls. CONCLUSIONS: Dietary wheat ATI activate murine and human myeloid cells. The amount of ATI present in an average human wheat-based diet caused mild intestinal inflammation, which was propagated to extraintestinal sites, leading to exacerbation of CNS inflammation and worsening of clinical symptoms in EAE. These results support the importance of the gut-brain axis in inflammatory CNS disease.


Subject(s)
Multiple Sclerosis , Humans , Animals , Mice , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Triticum/chemistry , Amylases , Leukocytes, Mononuclear , Mice, Inbred C57BL , Inflammation , Central Nervous System , Glutens , Diet
20.
bioRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37489135

ABSTRACT

Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.

SELECTION OF CITATIONS
SEARCH DETAIL