Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Genet Genomics ; 48(11): 961-971, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34654681

ABSTRACT

In plants, transposable element (TE)-triggered mutants are important resources for functional genomic studies. However, conventional approaches for genome-wide identification of TE insertion sites are costly and laborious. This study developed a novel, rapid, and high-throughput TE insertion site identification workflow based on next-generation sequencing and named it Transposable Element Amplicon Sequencing (TEAseq). Using TEAseq, we systemically profiled the Dissociation (Ds) insertion sites in 1606 independent Ds insertional mutants in advanced backcross generation using K17 as background. The Ac-containing individuals were excluded for getting rid of the potential somatic insertions. We characterized 35,696 germinal Ds insertions tagging 10,323 genes, representing approximately 23.3% of the total genes in the maize genome. The insertion sites were presented in chromosomal hotspots around the ancestral Ds loci, and insertions occurred preferentially in gene body regions. Furthermore, we mapped a loss-of-function AGL2 gene using bulked segregant RNA-sequencing assay and proved that AGL2 is essential for seed development. We additionally established an open-access database named MEILAM for easy access to Ds insertional mutations. Overall, our results have provided an efficient workflow for TE insertion identification and rich sequence-indexed mutant resources for maize functional genomic studies.


Subject(s)
Genome, Plant , Genomics , Mutagenesis, Insertional , Zea mays/genetics , Chromosome Mapping , DNA Transposable Elements , Gene Library , Genetic Association Studies , Genome-Wide Association Study , Genomics/methods , High-Throughput Nucleotide Sequencing , Phenotype , Plants, Genetically Modified , Polymorphism, Genetic
2.
Genes (Basel) ; 12(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34681032

ABSTRACT

Cold tolerance is a complex trait that requires a critical perspective to understand its underpinning mechanism. To unravel the molecular framework underlying maize (Zea mays L.) cold stress tolerance, we conducted a comparative transcriptome profiling of 24 cold-tolerant and 22 cold-sensitive inbred lines affected by cold stress at the seedling stage. Using the RNA-seq method, we identified 2237 differentially expressed genes (DEGs), namely 1656 and 581 annotated and unannotated DEGs, respectively. Further analysis of the 1656 annotated DEGs mined out two critical sets of cold-responsive DEGs, namely 779 and 877 DEGs, which were significantly enhanced in the tolerant and sensitive lines, respectively. Functional analysis of the 1656 DEGs highlighted the enrichment of signaling, carotenoid, lipid metabolism, transcription factors (TFs), peroxisome, and amino acid metabolism. A total of 147 TFs belonging to 32 families, including MYB, ERF, NAC, WRKY, bHLH, MIKC MADS, and C2H2, were strongly altered by cold stress. Moreover, the tolerant lines' 779 enhanced DEGs were predominantly associated with carotenoid, ABC transporter, glutathione, lipid metabolism, and amino acid metabolism. In comparison, the cold-sensitive lines' 877 enhanced DEGs were significantly enriched for MAPK signaling, peroxisome, ribosome, and carbon metabolism pathways. The biggest proportion of the unannotated DEGs was implicated in the roles of long non-coding RNAs (lncRNAs). Taken together, this study provides valuable insights that offer a deeper understanding of the molecular mechanisms underlying maize response to cold stress at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to cold stress.


Subject(s)
Cold-Shock Response/genetics , Plant Proteins/genetics , Transcriptome/genetics , Zea mays/genetics , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Metabolic Networks and Pathways/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , RNA-Seq , Seedlings/genetics , Seedlings/growth & development , Transcription Factors/genetics , Zea mays/growth & development
3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209553

ABSTRACT

Maize (Zea mays L.) is the most essential food crop in the world. However, maize is highly susceptible to drought stress, especially at the seedling stage, and the molecular mechanisms underlying drought tolerance remain elusive. In this study, we conducted comparative transcriptome and physiological analyses of drought-tolerant (CML69) and susceptible (LX9801) inbred lines subjected to drought treatment at the seedling stage for three and five days. The tolerant line had significantly higher relative water content in the leaves, as well as lower electrolyte leakage and malondialdehyde levels, than the susceptible line. Using an RNA-seq-based approach, we identified 10,084 differentially expressed genes (DEGs) with 6906 and 3178 DEGs been annotated and unannotated, respectively. Two critical sets of drought-responsive DEGs, including 4687 genotype-specific and 2219 common drought-responsive genes, were mined out of the annotated DEGs. The tolerant-line DEGs were predominantly associated with the cytoskeleton, cell wall modification, glycolysis/gluconeogenesis, transport, osmotic regulation, drought avoidance, ROS scavengers, defense, and transcriptional factors. For the susceptible line, the DEGs were highly enriched in the photosynthesis, histone, and carbon fixation pathways. The unannotated DEGs were implicated in lncRNAs, including 428 previously reported and 22% putative TE-lncRNAs. There was consensus on both the physiological response and RNA-seq outcomes. Collectively, our findings will provide a comprehensive basis of the molecular networks mediating drought stress tolerance of maize at the seedling stage.


Subject(s)
Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves/genetics , Stress, Physiological , Transcriptome , Zea mays/genetics , Acclimatization , Computational Biology/methods , Gene Ontology , High-Throughput Nucleotide Sequencing , Models, Biological , Phenotype , Seedlings/genetics , Seedlings/growth & development , Sequence Analysis, RNA
4.
Int J Mol Sci ; 21(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182372

ABSTRACT

As sessile species, plants have to deal with the rapidly changing environment. In response to these environmental conditions, plants employ a plethora of response mechanisms that provide broad phenotypic plasticity to allow the fine-tuning of the external cues related reactions. Molecular biology has been transformed by the major breakthroughs in high-throughput transcriptome sequencing and expression analysis using next-generation sequencing (NGS) technologies. These innovations have provided substantial progress in the identification of genomic regions as well as underlying basis influencing transcriptional and post-transcriptional regulation of abiotic stress response. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as essential regulators of plants abiotic stress response. However, shared traits in the biogenesis of ncRNAs and the coordinated cross-talk among ncRNAs mechanisms contribute to the complexity of these molecules and might play an essential part in regulating stress responses. Herein, we highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focusing on their origin, biogenesis, modes of action, and fundamental roles in plant response to abiotic stresses.


Subject(s)
Plants/genetics , RNA, Plant/genetics , RNA, Untranslated/genetics , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , MicroRNAs/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL