Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Dermatol Res ; 316(7): 341, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847867

ABSTRACT

Topical tirbanibulin is a highly effective and well tolerated novel treatment option for actinic keratoses (AKs). This study aimed to characterize the mode of action of tirbanibulin in keratinocytes (NHEK) and cutaneous squamous cell carcinoma (cSCC) cell lines (A431, SCC-12) in vitro. Tirbanibulin significantly reduced proliferation in a dose-dependent manner in all investigated cell lines, inhibited migration, and induced G2/M-cell cycle arrest only in the cSCC cell lines analyzed, and induced apoptosis solely in A431, which showed the highest sensitivity to tirbanibulin. In general, we detected low basal expression of phosphorylated SRC in all cell lines analyzed, therefore, interference with SRC signaling does not appear to be the driving force regarding the observed effects of tirbanibulin. The most prominent tirbanibulin-mediated effect was on ß-tubulin-polymerization, which was especially impaired in A431. Additionally, tirbanibulin induced an increase of the proinflammatory cytokines IL-1α, bFGF and VEGF in A431. In conclusion, tirbanibulin mediated anti-tumor effects predominantly in A431, while healthy keratinocytes and more dedifferentiated SCC-12 were less influenced. These effects of tirbanibulin are most likely mediated via dysregulation of ß-tubulin-polymerization and may be supported by proinflammatory aspects.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Keratinocytes , Skin Neoplasms , Tubulin , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Line, Tumor , Tubulin/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Polymerization/drug effects , Keratosis, Actinic/drug therapy , Keratosis, Actinic/pathology , Keratosis, Actinic/metabolism , Signal Transduction/drug effects , Acetamides , Morpholines , Pyridines
2.
Psychon Bull Rev ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238562

ABSTRACT

Human beings display the extraordinary ability of grasping and communicating abstract concepts. Yet, no standardized instruments exist to assess this ability. Developing these tools is paramount for understanding abstract representations such as social concepts, with ramifications in educational and clinical settings. Here, we developed an image database depicting abstract social concepts varying in social desirability. We first validated the image database in a sample of neurotypical participants. Then, we applied the database to test different hypotheses regarding how social concepts are represented across samples of adults and children with autism spectrum condition (ASC). Relative to the neurotypicals, we did not observe differences related to ASC in identification performance of the social desirability of the concepts, nor differences in metacognitive ability. However, we observed a preference bias away from prosocial concepts that was linked to individual autistic traits in the neurotypicals, and higher in ASC relative to the neurotypicals both in adults and children. These results indicate that abstract representations such as social concepts are dependent on individual neurodevelopmental traits. The image database thus provides a standardized assessment tool for investigating the representation of abstract social concepts in the fields of psycholinguistics, neuropsychology, neuropsychiatry, and cognitive neuroscience, across different cultures and languages.

3.
J Dermatol Sci ; 104(1): 30-38, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34479772

ABSTRACT

BACKGROUND: Organ transplant recipients show a high incidence for the formation of cutaneous squamous cell carcinoma (cSCC), while sirolimus appears to reduce the risk. GRO-α is a chemokine, which is overexpressed in many tumor entities and associated with malignant transformation. However, little is known about the expression and function of GRO-α in human cSCC. OBJECTIVE: Our aim was to investigate the relevance of the GRO-α (CXCL-1)/ CXCR2 axis in human cSCC and the potential impact of sirolimus. METHODS: We analyzed the GRO-α expression in human keratinocytes, different cSCC cell lines as well as cSCC tissue and investigated its effect on cell proliferation and migration. Additionally, we incubated cells with sirolimus and measured the expression of GRO-α and its receptor CXCR2. RESULTS: We showed that both constitutive as well as induced GRO-α expression is higher in in cSCC cell lines compared to keratinocytes and that GRO-α protein is detectable in human cSCC tissue. By GRO-α exposure and shRNA knock down, we identified GRO-α as a driving factor in proliferation and migration. Moreover, in a dermis equivalent GRO-α knocked down cSCC cell lines displayed a reduced capacity in tumor nest formation. Incubation with sirolimus significantly inhibited GRO-α expression in keratinocytes as well as tumor cell lines. Moreover, sirolimus decreased the expression of the corresponding receptor CXCR2. CONCLUSION: Taken together, our results suggest that the GRO-α/CXCR2 axis plays a role in human keratinocyte carcinogenesis and might represent a molecular mechanism for the preventive effect of mTOR inhibitors in cSCC development.


Subject(s)
Carcinoma, Squamous Cell/prevention & control , Chemokine CXCL1/metabolism , MTOR Inhibitors/pharmacology , Receptors, Interleukin-8B/metabolism , Skin Neoplasms/prevention & control , Carcinogenesis/drug effects , Carcinogenesis/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Chemokine CXCL1/antagonists & inhibitors , Chemokine CXCL1/genetics , Gene Knockdown Techniques , Humans , Keratinocytes/drug effects , Keratinocytes/immunology , Keratinocytes/metabolism , MTOR Inhibitors/therapeutic use , Receptors, Interleukin-8B/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/immunology , Sirolimus/pharmacology , Sirolimus/therapeutic use , Skin Neoplasms/immunology , Skin Neoplasms/pathology
4.
Phytochemistry ; 175: 112371, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32283438

ABSTRACT

During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN.


Subject(s)
Brassica rapa , Brassica , Glucosinolates , Indoles , Plant Roots , Plants, Genetically Modified
5.
Int J Mol Sci ; 21(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272759

ABSTRACT

Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Halogenation/physiology , Indoleacetic Acids/metabolism , Amino Acids/metabolism , Fabaceae/metabolism , Gene Expression Regulation, Plant/physiology , Indoles/metabolism , Pisum sativum/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Tryptophan/metabolism
6.
J Dermatol Sci ; 92(2): 172-180, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30220530

ABSTRACT

BACKGROUND: Due to their immunosuppressive therapy, organtransplant recipients (OTRs) exhibit a high incidence for the development of cutaneous squamous cell carcinoma (cSCC). Randomized studies of kidney-transplanted patients indicate a significant lower susceptibility for cSCC among patients receiving the mTOR-inhibitor Sirolimus, compared to patients without mTOR-regimen. The exact mechanism, how mTOR inhibition affects keratinocyte carcinogenesis remains unclear. OBJECTIVE: Our aim was to investigate the impact of Sirolimus on the expression level of the oncogene ATF3, which is involved in the development and progression of cSCC. METHODS: We incubated human keratinocytes, cSSC cell lines and 3D skin equivalents with Sirolimus, exposed the cells to calcineurin inhibitors (CNI) and UVA-radiation and measured the expression level of ATF3 by real-time PCR and western blot. RESULTS: We show that Sirolimus downregulates the expression of ATF3 induced by cyclosporine or cyclosporine plus UV-radiation in keratinocytes. In line with this we demonstrate a decrease in ATF3 expression, by incubating 3D skin equivalents with Sirolimus prior to cyclosporine and UV-light. However, Sirolimus has no significant impact on the ATF3 expression levels of cyclosporine stimulated cSCC cell lines. CONCLUSION: Taken together, our study demonstrates that Sirolimus downregulates the CNI or UV-induced ATF3 expression in human keratinocytes, which could be a potential molecular mechanism how Sirolimus reduces cSCC in OTRs. The lack of ATF3 suppression by Sirolimus in cSCC cell lines fits to observations from clinical studies which demonstrated a clinical benefit from the switch to a mTOR-regimen in patients with low tumor burden in early stage of disease.


Subject(s)
Activating Transcription Factor 3/metabolism , Calcineurin Inhibitors/adverse effects , Cyclosporine/adverse effects , Keratinocytes/drug effects , Sirolimus/pharmacology , Carcinogenesis/chemically induced , Carcinogenesis/radiation effects , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/prevention & control , Cell Culture Techniques , Cell Line, Tumor , Down-Regulation , Humans , Immunosuppressive Agents/adverse effects , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/radiation effects , Oncogenes , Organ Transplantation/adverse effects , Sirolimus/therapeutic use , Skin/cytology , Skin/drug effects , Skin/pathology , Skin/radiation effects , Skin Neoplasms/etiology , Skin Neoplasms/pathology , Skin Neoplasms/prevention & control , TOR Serine-Threonine Kinases/antagonists & inhibitors , Ultraviolet Rays/adverse effects
7.
Exp Dermatol ; 25(10): 775-82, 2016 10.
Article in English | MEDLINE | ID: mdl-27194247

ABSTRACT

Risk factors for the development of cutaneous squamous cell carcinoma (cSCC) include ultraviolet radiation and immunosuppression. In particular, solid organ transplant recipients show a high incidence of cSCC, depending on the immunosuppressive regimen. While azathioprine or calcineurin inhibitors increase the risk of cSCC development, mammalian target of rapamycin (mTOR) inhibitors decreases this risk. At the moment, the mechanisms behind this protective effect of mTOR inhibitors are not fully understood. We evaluated effects of the mTOR inhibitors sirolimus and everolimus on keratinocytes, cSCC cell lines and an organotypic skin model in vitro in regard to proliferation, cytokine secretion and differentiation. We show that mTOR inhibitors block keratinocyte proliferation and alter cytokine and cytokeratin production: in particular, mTOR inhibition leads to upregulation of interleukin-6 and downregulation of cytokeratin 10. Therefore, mTOR inhibitors have effects on keratinocytes, which could play a role in the pathogenesis of cSCC.


Subject(s)
Cell Differentiation , Cell Proliferation/drug effects , Cytokines/metabolism , Keratinocytes/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Humans , Keratinocytes/cytology , Keratinocytes/metabolism
8.
Biotechnol Adv ; 32(6): 1168-79, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24699436

ABSTRACT

A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties.


Subject(s)
Biosynthetic Pathways , Drug Discovery , Plant Roots/metabolism , Plants/metabolism , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...