Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters











Publication year range
1.
J Cell Mol Med ; 28(19): e70126, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39384181

ABSTRACT

B-cell acute lymphoblastic leukaemia (B-ALL) is the most prevalent hematologic malignancy in children and a leading cause of mortality. Managing B-ALL remains challenging due to its heterogeneity and relapse risk. This study aimed to delineate the molecular features of paediatric B-ALL and explore the clinical utility of circulating tumour DNA (ctDNA). We analysed 146 patients with paediatric B-ALL who received systemic chemotherapy. The mutational landscape was profiled in bone marrow (BM) and plasma samples using next-generation sequencing. Minimal residual disease (MRD) testing on day 19 of induction therapy evaluated treatment efficacy. RNA sequencing identified gene fusions in 61% of patients, including 37 novel fusions. Specifically, the KMT2A-TRIM29 novel fusion was validated in a boy who responded well to initial therapy but relapsed after 1 year. Elevated mutation counts and maximum variant allele frequency in baseline BM were associated with significantly poorer chemotherapy response (p = 0.0012 and 0.028, respectively). MRD-negative patients exhibited upregulation of immune-related pathways (p < 0.01) and increased CD8+ T cell infiltration (p = 0.047). Baseline plasma ctDNA exhibited high mutational concordance with the paired BM samples and was significantly associated with chemotherapy efficacy. These findings suggest that ctDNA and BM profiling offer promising prognostic insights for paediatric B-ALL management.


Subject(s)
Biomarkers, Tumor , Mutation , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Child , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Female , Child, Preschool , Neoplasm, Residual/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Adolescent , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Infant , Prognosis , High-Throughput Nucleotide Sequencing/methods , Bone Marrow/pathology , Bone Marrow/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Histone-Lysine N-Methyltransferase/genetics
2.
Nanomicro Lett ; 17(1): 24, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331290

ABSTRACT

Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.

3.
J Lipid Res ; : 100642, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303984

ABSTRACT

The production of the omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from alpha-linolenic acid (ALA) relies on the delta-6 desaturase (D6D) enzyme encoded by the Fads2 gene. While EPA and DHA reduce hepatic triacylglycerol (TAG) storage and regulate lipogenesis, the independent impact of ALA is less understood. To address this gap in knowledge, hepatic fatty acid metabolism was investigated in male wildtype (WT) and Fads2 knockout (KO) mice fed diets (16% kcal from fat) containing either lard (no n-3 LCPUFA), flaxseed oil (ALA rich), or menhaden oil (EPA/DHA rich) for 21 weeks. Fat content and composition, as well as markers of lipogenesis, glyceroneogenesis, and TAG synthesis, were analyzed using histology, gas chromatography, and reverse transcription quantitative PCR (RT-qPCR). Mice fed the menhaden diet had significantly lower hepatic TAG compared to both lard- and flax-fed mice, concomitant with changes in n-3 and n-6 LCPUFA in both TAG and phospholipid (PL) fractions (all p < 0.05). Flax-fed WT mice had lower liver TAG content compared to their KO counterparts. Menhaden-fed mice had significantly lower expression of key lipogenic (Scd1, Srebp-1c, Fasn, Fads1, Fads2), glyceroneogenic (Pck1), and TAG synthesis (Agpat3) genes compared to lard, with flax-fed mice showing some intermediate effects. Gene expression effects were independent of D6D activity, since no differences were detected between WT and KO mice fed the same diet. This study demonstrates that EPA/DHA and not ALA itself is critical for the prevention of hepatic steatosis.

4.
Front Cell Dev Biol ; 12: 1432744, 2024.
Article in English | MEDLINE | ID: mdl-39206092

ABSTRACT

Recent advancements in organoid technology have heralded a transformative era in biomedical research, characterized by the emergence of gut organoids that replicate the structural and functional complexity of the human intestines. These stem cell-derived structures provide a dynamic platform for investigating intestinal physiology, disease pathogenesis, and therapeutic interventions. This model outperforms traditional two-dimensional cell cultures in replicating cell interactions and tissue dynamics. Gut organoids represent a significant leap towards personalized medicine. They provide a predictive model for human drug responses, thereby minimizing reliance on animal models and paving the path for more ethical and relevant research approaches. However, the transition from basic organoid models to more sophisticated, biomimetic systems that encapsulate the gut's multifaceted environment-including its interactions with microbial communities, immune cells, and neural networks-presents significant scientific challenges. This review concentrates on recent technological strides in overcoming these barriers, emphasizing innovative engineering approaches for integrating diverse cell types to replicate the gut's immune and neural components. It also explores the application of advanced fabrication techniques, such as 3D bioprinting and microfluidics, to construct organoids that more accurately replicate human tissue architecture. They provide insights into the intricate workings of the human gut, fostering the development of targeted, effective treatments. These advancements hold promise in revolutionizing disease modeling and drug discovery. Future research directions aim at refining these models further, making them more accessible and scalable for wider applications in scientific inquiry and clinical practice, thus heralding a new era of personalized and predictive medicine.

5.
Nat Commun ; 15(1): 5636, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965232

ABSTRACT

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical ß-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.


Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Microbial Sensitivity Tests , Nanotubes/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Lipid Peroxidation/drug effects , Peptides/pharmacology , Peptides/chemistry
6.
Leukemia ; 38(7): 1541-1552, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750139

ABSTRACT

The clinical implications of CSF-ctDNA positivity in newly diagnosed diffuse large B cell lymphoma (ND-DLBCL) remains largely unexplored. One hundred ND-DLBCL patients were consecutively enrolled as training cohort and another 26 ND-DLBCL patients were prospectively enrolled in validation cohort. CSF-ctDNA positivity (CSF(+)) was identified in 25 patients (25.0%) in the training cohort and 7 patients (26.9%) in the validation cohort, extremely higher than CNS involvement rate detected by conventional methods. Patients with mutations of CARD11, JAK2, ID3, and PLCG2 were more predominant with CSF(+) while FAT4 mutations were negatively correlated with CSF(+). The downregulation of PI3K-AKT signaling, focal adhesion, actin cytoskeleton, and tight junction pathways were enriched in CSF(+) ND-DLBCL. Furthermore, pretreatment CSF(+) was significantly associated with poor outcomes. Three risk factors, including high CSF protein level, high plasma ctDNA burden, and involvement of high-risk sites were used to predict the risk of CSF(+) in ND-DLBCL. The sensitivity and specificity of pretreatment CSF-ctDNA to predict CNS relapse were 100% and 77.3%. Taken together, we firstly present the prevalence and the genomic and transcriptomic landscape for CSF-ctDNA(+) DLBCL and highlight the importance of CSF-ctDNA as a noninvasive biomarker in detecting and monitoring of CSF infiltration and predicting CNS relapse in DLBCL.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Lymphoma, Large B-Cell, Diffuse , Mutation , Humans , Lymphoma, Large B-Cell, Diffuse/cerebrospinal fluid , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/diagnosis , Female , Male , Middle Aged , Biomarkers, Tumor/cerebrospinal fluid , Biomarkers, Tumor/genetics , Aged , Adult , Circulating Tumor DNA/cerebrospinal fluid , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Prognosis , Aged, 80 and over , Young Adult , Prospective Studies
7.
Int J Surg ; 110(6): 3504-3517, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38502852

ABSTRACT

BACKGROUND: Patients with peritoneal metastasis (PM) from gastric cancer (GC) exhibit poor prognosis. Chemoimmunotherapy offers promising clinical benefits; however, its efficacy and predictive biomarkers in a conversion therapy setting remain unclear. The authors aimed to retrospectively evaluate chemoimmunotherapy efficacy in a conversion therapy setting for GC patients with PM and establish a prediction model for assessing clinical benefits. MATERIALS AND METHODS: A retrospective evaluation of clinical outcomes encompassed 55 GC patients with PM who underwent chemoimmunotherapy in a conversion therapy setting. Baseline PM specimens were collected for genomic and transcriptomic profiling. Clinicopathological factors, gene signatures, and tumor immune microenvironment were evaluated to identify predictive markers and develop a prediction model. RESULTS: Chemoimmunotherapy achieved a 41.8% objective response rate and 72.4% R0 resection rate in GC patients with PM. Patients with conversion surgery showed better overall survival (OS) than those without the surgery (median OS: not reached vs 7.82 m, P <0.0001). Responders to chemoimmunotherapy showed higher ERBB2 and ERBB3 mutation frequencies, CTLA4 and HLA-DQB1 expression, and CD8+ T cell infiltration, but lower CDH1 mutation and naïve CD4+ T cell infiltration, compared to nonresponders. A prediction model was established integrating CDH1 and ERBB3 mutations, HLA-DQB1 expression, and naïve CD4+ T cell infiltration (AUC=0.918), which were further tested using an independent external cohort (AUC=0.785). CONCLUSION: This exploratory study comprehensively evaluated clinicopathological, genomic, and immune features and developed a novel prediction model, providing a rational basis for the selection of GC patients with PM for chemoimmunotherapy-involved conversion therapy.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/therapy , Retrospective Studies , Male , Female , Tumor Microenvironment/immunology , Middle Aged , Aged , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/immunology , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/therapy , Peritoneal Neoplasms/drug therapy , Immunotherapy/methods , Adult , Treatment Outcome , Genomics
8.
ACS Cent Sci ; 9(7): 1480-1487, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37521785

ABSTRACT

Deciphering the conformations and interactions of peptides in their assemblies offers a basis for guiding the rational design of peptide-assembled materials. Here we report the use of scanning tunneling microscopy (STM), a single-molecule imaging method with a submolecular resolution, to distinguish 18 types of coexisting conformational substates of the ß-strand of the 8-37 segment of human islet amyloid polypeptide (hIAPP 8-37). We analyzed the pairwise peptide-peptide interactions in the hIAPP 8-37 assembly and found 82 interconformation interactions within a free energy difference of 3.40 kBT. Besides hIAPP 8-37, this STM method validates the existence of multiple conformations of other ß-sheet peptide assemblies, including mutated hIAPP 8-37 and amyloid-ß 42. Overall, the results reported in this work provide single-molecule experimental insights into the conformational ensemble and interpeptide interactions in the ß-sheet peptide assembly.

9.
Sci Adv ; 9(27): eadg7943, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37406110

ABSTRACT

An understanding of protein conformational ensembles is essential for revealing the underlying mechanisms of interpeptide recognition and association. However, experimentally resolving multiple simultaneously existing conformational substates remains challenging. Here, we report the use of scanning tunneling microscopy (STM) to analyze the conformational substate ensembles of ß sheet peptides with a submolecular resolution (in-plane <2.6 Å). We observed ensembles of more than 10 conformational substates (with free energy fluctuations between several kBTs) in peptide homoassemblies of keratin (KRT) and amyloidal peptides (-5Aß42 and TDP-43 341-357). Furthermore, STM reveals a change in the conformational ensemble of peptide mutants, which is correlated with the macroscopic properties of peptide assemblies. Our results demonstrate that the STM-based single-molecule imaging can capture a thorough picture of the conformational substates with which to build an energetic landscape of interconformational interactions and can rapidly screen conformational ensembles, which can complement conventional characterization techniques.


Subject(s)
Amyloid , Peptides , Protein Conformation, beta-Strand , Peptides/chemistry , Protein Conformation , Entropy
10.
J Lipid Res ; 64(6): 100376, 2023 06.
Article in English | MEDLINE | ID: mdl-37085033

ABSTRACT

The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.


Subject(s)
Fatty Acids , Insulins , Mice , Male , Animals , Fatty Acids/metabolism , Triglycerides/metabolism , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids/metabolism , Mice, Knockout , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Body Weight , Insulins/metabolism , Adipose Tissue/metabolism
11.
Nano Lett ; 23(6): 2370-2378, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36897606

ABSTRACT

Transferring structural information from amino acid sequence to macroscale assembly is a challenging approach for designing protein quaternary structure. However, the pathway by which the slight variations in sequence result in a global perturbation effect on the assembled structure is unknown. Herein, we design two synthetic peptides, QNL-His and QNL-Arg, with one amino acid substitution and use scanning tunneling microscopy (STM) to image individual peptides in the assembled state. The submolecular resolution of STM enables us to determine the folding structure and ß-sheet supramolecular organization of peptides. QNL-His and QNL-Arg differ in their ß-strand length distribution in pleated ß-sheet association. These structural variations lead to distinguishable outcomes in their ß-sheet assembled fibrils and phase transitions. The comparison of QNL-His versus QNL-Arg structures and macroscopic properties unveils the role of assembly to amplify the structural variations associated with a single-site mutation from a single-molecule scale to a macroscopic scale.


Subject(s)
Microscopy, Scanning Tunneling , Peptides , Protein Conformation, beta-Strand , Protein Structure, Secondary , Peptides/chemistry , Amino Acid Sequence
13.
Am J Physiol Endocrinol Metab ; 324(3): E241-E250, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36696599

ABSTRACT

Delta-6 desaturase (D6D), encoded by the Fads2 gene, catalyzes the first step in the conversion of α-linolenic acid to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ablation of D6D in whole body Fads2-/- knockout (KO) mice results in an inability to endogenously produce EPA and DHA. Evidence supports a beneficial role for EPA and DHA on insulin-stimulated glucose disposal in skeletal muscle in the context of a metabolic challenge; however, it is unknown how low EPA and DHA levels impact skeletal muscle fatty acid composition and insulin signaling in a healthy context. The objective of this study was to examine the impact of ablating the endogenous production of EPA and DHA on skeletal muscle fatty acid composition, whole body glucose and insulin tolerance, and a key marker of skeletal muscle insulin signaling (pAkt). Male C57BL/6J wild-type (WT), Fads2+/- heterozygous, and Fads2-/- KO mice were fed a low-fat diet (16% kcal from fat) modified to contain either 7% w/w lard or 7% w/w flaxseed for 21 wk. No differences in total phospholipid (PL), triacylglycerol, or reactive lipid content were observed between genotypes. As expected, KO mice on both diets had significantly less DHA content in skeletal muscle PL. Despite this, KO mice did not have significantly different glucose or insulin tolerance compared with WT mice on either diet. Basal pAktSer473 was not significantly different between the genotypes within each diet. Ultimately, this study shows for the first time, to our knowledge, that the reduction of DHA in skeletal muscle is not necessarily detrimental to glucose homeostasis in otherwise healthy animals.NEW & NOTEWORTHY Skeletal muscle is the primary location of insulin-stimulated glucose uptake. EPA and DHA supplementation has been observed to improve skeletal muscle insulin-stimulated glucose uptake in models of metabolic dysfunction. Fads2-/- knockout mice cannot endogenously produce long-chain n-3 polyunsaturated fatty acids. Our results show that the absence of DHA in skeletal muscle is not detrimental to whole body glucose homeostasis in healthy mice.


Subject(s)
Docosahexaenoic Acids , Glucose Intolerance , Mice , Male , Animals , Insulin/metabolism , Mice, Inbred C57BL , Eicosapentaenoic Acid , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Phospholipids , Glucose Intolerance/metabolism , Glucose/metabolism , Mice, Knockout
14.
Pharmacol Res ; 185: 106503, 2022 11.
Article in English | MEDLINE | ID: mdl-36241000

ABSTRACT

Acute myeloid leukemia (AML) is featured with poor prognosis and high mortality, because chemo-resistance, nonspecific distribution and dose-limiting toxicity lead to a high rate of relapse and a very low 5-year survival percentage of less than 25%. CXCR4 is a highly expressed chemokine receptor in multiple types of AML cells and closely associated with the drug resistance and relapse. In this work, we integrate a chemically synthesized CXCR4 antagonistic peptide and doxorubicin using DSPE-mPEG2000 micelles (referred to as M-E5-Dox) that is applied to a very challenging refractory AML mouse model as well as human AML cell lines. Results showed that M-E5-Dox can effectively bind to the CXCR4-expressing AML cells, downregulating the signaling proteins mediated by CXCR4/CXCL12 axis and increasing the cellular uptake of Dox. Importantly, M-E5-Dox remarkably decreases the leukemic cells in the peripheral blood and bone marrow, as well as their infiltration in the spleen and liver of the AML mice, which in turn prolongs the survival significantly. Meanwhile, M-E5-Dox did not increase the cardiotoxicity of Dox. In conclusion, M-E5-Dox harnesses the functions of CXCR4 specific binding and CXCR4 antagonism of the peptide and the tumor cell killing capacity of Dox, which displays significant therapeutic effects and promising translational potentials for the treatment of refractory AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Mice , Animals , Leukemia, Myeloid, Acute/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Signal Transduction , Peptides/pharmacology , Recurrence , Receptors, CXCR4
15.
ACS Appl Mater Interfaces ; 14(25): 28527-28536, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35713340

ABSTRACT

Rapid antigen detection tests are urgently needed for the early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The discovery of a binder with high affinity and selectivity for the biomarkers presented by SARS-CoV-2 is crucial to the development of the rapid antigen detection method. We utilized the surface biopanning to identify a peptide binder R1 from a phage-displayed peptide library consisting of 109 independent phage recombinants. The R1 peptide exhibited high-affinity for specific binding with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with a dissociation constant KD of (7.5 ± 1.9) × 10-10 M, which maintained high binding affinity with the RBD derived from Gamma, Lambda, Delta, and Omicron variants. The composition and sequence dependence of binding characteristics in R1-RBD interactions was revealed by the binding affinity fluctuations between RBD and the scrambled sequences or single-site mutants of R1. The R1-functionalized gold nanoparticles possessed concentration-dependent response to RBD and selectivity over bovine serum albumin and human serum albumin. The peptide binder R1 shows the potential to be used for constructing a rapid detection method for the early-stage diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 , Metal Nanoparticles , Antibodies, Viral , Binding Sites , COVID-19/diagnosis , Gold , Humans , Peptide Library , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
16.
Article in English | MEDLINE | ID: mdl-35421603

ABSTRACT

Δ-6 desaturase (D6D) is a key enzyme in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA). Evidence suggests that reduced D6D activity not only disrupts LC-PUFA production, but also impacts whole body lipid handling and body weight; however, the mechanisms remain largely unexplored. Therefore, we investigated the effect of D6D inhibition on the regulation of lipid accumulation in 3T3-L1 adipocytes with and without changes in n-3 PUFA content. 3T3-L1 cells were treated with a D6D inhibitor (SC-26196) in the presence or absence of α-linolenic acid (ALA) throughout differentiation. We found that D6D inhibition blocked the conversion of ALA to eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPAn-3) when ALA was supplemented, while no changes in n-3 PUFA content were observed in cells treated with the D6D inhibitor alone. D6D inhibited cells had reduced triacylglycerol (TAG) accumulation despite an EPA/DPA deficiency. In addition, analyses of cellular protein markers, as well as non-esterified fatty acids and glycerol release in medium, suggested an increase in lipolysis and a decrease in fatty acid re-esterification in D6D-inhibited cells, independent of n-3 PUFA changes. To provide further evidence, we treated cells with the D6D inhibitor in the presence or absence of EPA and compared them with ALA-treated cells. Although EPA further reduced TAG content, the reduced markers of fatty acid re-esterification were not affected by ALA or EPA. Collectively, this study provides new insight showing that D6D inhibition reduces TAG accumulation and fatty acid re-esterification in adipocytes independent of changes in n-3 PUFA cellular content.


Subject(s)
Fatty Acids, Omega-3 , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Esterification , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Mice , Triglycerides/metabolism
17.
Nano Lett ; 22(6): 2350-2357, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35274950

ABSTRACT

Protein crystallization is a prevalent phenomenon existing in the formation of intricate protein-assembled structures in living cells. Whether the crystallization of a protein would exert a specific biological function, however, remains poorly understood. Here, we reconstructed a recombinant galectin-10 (gal-10) protein and artificially engineered a gal-10 protein assembly in two distinguishable states: i.e., an insoluble crystalline state and a soluble state. The potency of the gal-10 protein in either the crystalline state or the soluble state to induce chemokine or cytokine release in the primary human nasal epithelial cells and nasal polyps derived from chronic rhinosinusitis patients with nasal polyps was investigated. The crystalline gal-10 upregulated the gene expression of chemokines or cytokines, including IL-1ß, IL-6, IL-8, TNF-α, and GM-CSF, in patient-derived primary cells and nasal polyps. In contrast, soluble gal-10 displayed a diminished potency to induce inflammation. Our results demonstrate that the gal-10 protein potency of activating inflammation is correlated with its crystalline state.


Subject(s)
Glycoproteins , Inflammation , Lysophospholipase , Nasal Polyps , Sinusitis , Crystallization , Cytokines , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Lysophospholipase/chemistry , Lysophospholipase/metabolism , Nasal Polyps/metabolism , Nasal Polyps/pathology , Sinusitis/metabolism
18.
J Nutr Biochem ; 102: 108940, 2022 04.
Article in English | MEDLINE | ID: mdl-35017005

ABSTRACT

Marine sourced N3-PUFA regulate lipid metabolism in adipose tissue and liver; however, less is known about plant sourced N3-PUFA. The goal of this study was to investigate plant and marine N3-PUFA regulation of fatty acid trafficking along the adipose tissue-liver axis according to nutritional state. Mice were fed low-fat diets (7% w/w) containing either lard, flaxseed, or menhaden oils for 8 weeks, and were euthanized in either fed or fasted states. Substrate utilization and physical activity were assessed during the transition from a fed to fasted state. Plasma biomarkers (triacylglycerol [TAG], non-esterified fatty acids [NEFA]), as well as liver and epididymal adipose tissue (eWAT) lipogenic and lipolytic markers, were measured. Neither plant nor marine N3-PUFA influenced substrate utilization or activity during the transition from a fed to fasted state. In the fed state, marine N3-PUFA reduced plasma TAG levels compared to the other diets, with no further reduction seen in fasted mice. Hepatic lipogenic markers (Fasn, Acc, Scd1, and Elovl6) were reduced in the fed state with marine N3-PUFA, but not plant N3-PUFA. In the fasted state, mice fed either N3-PUFA accumulated less liver TAG, had lower plasma NEFA, and suppressed eWAT HSL activity compared to lard. Marine N3-PUFA are more potent regulators of lipogenesis than plant N3-PUFA in the fed state, whereas both N3-PUFA influence eWAT lipolysis and plasma NEFA in the fasted state. This work provides novel insights regarding N3-PUFA regulation of fatty acid trafficking along the adipose tissue-liver axis according to nutritional state.


Subject(s)
Fatty Acids, Omega-3 , Adipose Tissue/metabolism , Animals , Fatty Acids/metabolism , Fatty Acids, Nonesterified , Fatty Acids, Omega-3/metabolism , Liver/metabolism , Mice , Triglycerides/metabolism
20.
J Colloid Interface Sci ; 610: 1005-1014, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34887062

ABSTRACT

As an important attempt towards creating hierarchical structures more like nature, the peptide is employed as a building block to build supramolecular architectures. An emerging question is whether the molecular mechanism of self-assembly obtained from the small molecule system, e.g., the driving forces of assembly are conventionally regarded as pairwise-additive, can be manifested in the self-association of biologically relevant amphiphilic peptides. A peptide, KRT-R, was derived from the 120-144 segment of keratin 14. The single cation-to-cation substitution with KRT-R at the site of 125 from arginine (R) to either lysine (K) or histidine (H) results in the peptide helices, KRT-K and KRT-H, sharing 96% sequence identity. These KRT-derived peptides possess similarities in the folding structures but exhibit divergent self-assembled structures. KRT-R and KRT-K self-assemble into sheets and fibrils, respectively. Whereas KRT-H associates into heterogeneous structures, including sheets, particles, and branched networks. The intrinsic tyrosine fluorescence spectroscopy measurements with the KRT-derived peptides within a temperature range of 25 °C to 95 °C reveal that the heating-triggered structural transitions of KRT-derived peptides are divergent. The alternation of single cationic residue changes the thermodynamic signature of peptide assemblies upon heating. A chemical denaturation experiment with KRT-derived peptides indicates that the intermolecular interactions that govern the supramolecular architectures formed by peptides are distinct. Overall, our work demonstrates the contribution of the interplay among various noncovalent interactions to supramolecular assembly.


Subject(s)
Peptides , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL